
CSE439 Week 6: Small-Scale Applications

Last part of HW3, Problem (1b): I may have confused the fact that

- a, b ⊗ c, d = a, b ⊗ - c, d = - a, b ⊗ c, d([]) [] [] ([]) ([] [])

with having become . Note while = a, bu [] = a, -bu' [] = 1, 1+ 1

2
[] = 1, -1 .- 1

2
[]

Clarifying hint on (b): try , see what you get, and then try to tell---is it the only possibility?=v -

At last we get into some famous instances of quantum applications. The first one was cooked up just to
show that quantum computations could meet a goal that classical algorithms cannot. Whether the goal
is compared fairly is open to debate, however. Here is some back-story:

David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing
while I was a graduate student and he was a postdoc at Oxford in the mid-1980s. At first, he claimed
quantum computers could solve the Halting Problem in finite time. Fellows of Oxford's Mathematical
Institute refuted the claim. But it was not crazy: a year ago it was proved that a binary quantum system
of "interactive provers" can (kind-of-)solve the Halting Problem in finite time. (My review of the paper is
at https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/) Per my memory of
observing some meetings about it, the gap in Deutsch's argument had to do with properties of
probability measures based on infinite binary sequences.

So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that
quantum computers can do and classical ones cannot. (Well, unless the playing field is leveled for
them...but before we argue about it, let's see the task.)

Deutsch's Algorithm

The task is a learning problem, a kind of interaction we haven't covered yet. Instead of "input , x
compute , a learning problem is to determine facts about an initially-unknown entity that y = f x "() f
you can query.

1. Oracle Turing machines give a classic way to define this kind of problem. For oracle functions
 or languages drawn from a limited class---such as subclasses of the regular languages---f A

can we design an OTM that on input (for large enough) can distinguish what is in time M 0n n A
(say) polynomial in ? The computation can learn about by making queries on n M 0A n A y
selected strings and observing the answers . y A y()

2. One can also define oracle circuits that have special oracle gates with some number of m
input wires and enough output wires to give the answer on any .f y() y ∈ 0, 1{ }m

https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/

3. An ordinary electrical test kit behaves that way. It is a circuit with a place(s) for you to insert one
or more (possibly-defective) electrical components . The test results should diagnose A
electrical facts about .A

4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms
work this way. They involve an oracle function given in reversible form f : 0, 1 0, 1{ }n → { }r

as the function defined by:F : 0, 1 0, 1 { }n+r → { }n+r

. F x, z = x, f x ⊕ z() (())

Usually is and the comma is just concatenation (i.e., tensor product) so the output is just z 0r

. In the simplest case , is a two-(qu)bit function. Some examples:xf x() n = r = 1 F

• If is the identity function, , then .f f x = x() F x, z = x, x ⊕ z = CNOT x, z () () ()
• If , then : , , , .f x = ¬x() F x, z = x, x ↔ z() () F 00 = 01() F 01 = 00() F 10 = 10() F 11 = 11()
• If is always false, i.e., , then is the two-qubit identity function.f f x = 0() F
• If , then , so , , , f x = 1() F x, z = x, ¬z() () F 00 = 01() F 01 = 00() F 10 = 11() F 11 = 10.()

These are all deterministic as functions of two-qubit basis states, so they permute the quantum
coordinates , , , and . Recall that gives the permutation that swaps 1 = 00 2 = 01 3 = 10 4 = 11 CNOT

the coordinates 3 and 4, that is, in swap notation. In full, we have:CNOT = 3 4()

, , , .F = -id) F = 1 2¬ () F = 0 () F = 1 2 3 41 ()()

The functions and are constant. The identity and functions have one true and f x = 0() f x = 1() ¬
one false value each, so they balance values of and . The question posed by Deutsch is:0 1

How many queries are needed to tell whether is constant from whether is balanced?f f

If we just think of , suppose we try the query and ask for . If we get the answer "f y = 0 f y()

 then it could be constant-false, but could also be the balanced identity function. The f 0 = 0"() f f
answer would leave both constant-true and negation as possibilities. Likewise if we try f 0 = 1()

. The first point is that this impossibility of hitting things with one query carries forward to the y = 1
way we have to modify the problem for quantum:

How many queries are needed to tell apart from ?F or F(id ¬) F or F(0 1)

It seems like we have more of a chance because now we can query two things: , , , or . Or in 00 01 10 11
the permutation view, we can query , , , or . The problem is that the range of answers we y = 1 2 3 4

0

1

H

H

H

?

can get is too limited for this to help. and can only be ro ; and can only be or F 1() F 2() 1 2 F 3() F 4() 3
. So suppose you query and get the answer . Then could be or could be . The 4 y = 3 4 F Fid F F1

basic problem for a classical algorithm is that every quadrant of the following diagram has both a
straight and a cross:

A quantum circuit, however, can make one query to an oracle gate for any of these four functions, and
can distinguish a member of the first pair from a member of the second pair by the answer to one qubit
after a measurement. The input is not but instead ; that is, the ancilla is initialized to , not to 00 01 1

. Here is the wavefront ("maze") diagram of how it works:0

Interlude: Is the comparison fair?

The unfair aspect (IMHO) is that the classical algorithm is being allowed to evaluate the oracle only at
basis vectors. The quantum algorithm gets to evaluate it at a linear combination. We can represent
this state using the Dirac notation from Chapter 14 as

00

01

11

10

Fid F¬ F0 F1
1

2

00

01

11

10

00

01

11

10

00

01

11

10

input x = 01

-1

-1 -1

-1

-1

-1

-1
-1

Fid

 = - + - + -
1
2

00 01 10 11

Well, suppose we allow evaluating ordinary Boolean functions at linear combinations of 0 and 1, such
as 0.25. We are really talking about the algebraic equivalents of these functions:f'

• If is the identity function, , then too, but as algebra.f f x = x() f' x = x()
• If , then . Maybe the only non-obvious choice?f x = ¬x() f' x = 1 - x()
• If is always false, i.e., , then . i.e., is always zero too.f f x = 0() f' x = 0() f'
• If , then too.f x = 1() f' x = 1()

If we evaluate the unknown at , then we get four different answers that distinguish the four f 0.25
possibilities entirely, not just telling "balanced" apart from "constant." So the classical algorithm does
even better---and still with just one "query."
FYI: https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/

Superdense Coding

It is easy to rig cases where you can distinguish them exactly by asking one query and F , F , F , F0 1 2 3
measuring both qubits. Just define , for instance, where ranges over ---or F 00 = ii() i 00, 01, 10, 11{ }
if you prefer, ranges over the permutation elements as used above---and have the other i 1, 2, 3, 4
values go in cycle after that. See the above diagram for . F 01 , F 10 , F 11() () () F 11()

"Superdense coding" is a case where the rigging has a bit of surprise because it appears to convey 2
bits of information with just 1 qubit of communication after a certain point in time. This is impossible by
the following theorem:

Holevo's Theorem: It is not possible to extract more than bits of classical information from any -q q
qubit quantum state.

00

01

11

10

00

01

11

10

Fid

The most important case where this "bites" IMHO is with graph states: You can input bits of ∼ n1
2

2

information by choosing the gates for edges of an undirected -vertex graph in a graph-state CZ n G
circuit on qubits, one for each vertex. But you can only get bits of information out by measuring. CG n n
 Hence graph-state encoding is majorly lossy and is often used only for special classes of graphs that
already have low information content, such as "grid graphs."

The "cheat" in superdense coding is that the communicating parties "Alice" and "Bob" exchange 1 bit of
information beforehand in order to set them up with an entangled qubit pair. Here is their circuit:

The opening Hadamard and CNOT set up the entangled pair. Alice then chooses one of the four Pauli
operators for the unknown operation in the middle. After the second CNOT, she applies Hadamard to
her qubit, measures, and sends the result to Bob. Bob then measures his qubit, and is able to infer
which of the four operators Alice used. Well, he got a qubit from Alice to begin with, and even though it
was before Alice made her 2-bit choice at the "?", it counts as 2 bits of "contact" anyway.

Even after the "magic" is explained away, this remains a nice illustration of a Deutsch-style learning
problem using the four Pauli matrices. We want to identify one of the following four possibilities exactly
by the results of two qubits.

This time the input is . To work it out via wavefronts (the figure below is left with in the 00 XZ⊗ I
middle, but all four will be exemplified):

00

01

11

10
-1

-1

-1

-1

I ⊗ I X ⊗ I Z ⊗ I -iY ⊗ I = XZ ⊗ I

Example: Quantum Teleportation

00

01

11

10

00

01

11

10

input x = 00

-1

-1

-1

-1

Deutsch-Jozsa Extension (Ch. 9, probably Tue. 10/8)

Getting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishing
constant functions from balanced ones, then you can make the classical f : 0, 1 0, 1{ }n → { }
algorithms require queries, while the quantum ones can still do it on one query to a completely 2 + 1n-1

separable superposed state. This is a conditional problem, called a promise problem, in that it only
applies when is in one of those two cases. If is neither balanced nor constant, then "all bets are f f
off"---any answer is fine, even . ¯ \ _ ツ _ / ¯ ()

The maze diagrams would get exponentially big, but we can track the computations via linear algebra.
It is like Deutsch's setup except with in place of the first , input in place of , and H⊗n H 0 1n 01
targets (ignoring the normalizers):2

• constant (instead of , so that is certainly measured.↦ +0n 0 1 +00 01 0n

• balanced (instead of , such that is certainly not measured.↦ ? +10 11 0n

The key observation is that for any , any argument , and , the amplitude in the f x ∈ 0, 1{ }n b ∈ 0, 1{ }
component of the final quantum state isxb 𝜙

.-1 -1
1

2n+1
∑

t ∈ 0,1{ }n
()x•t()f t ⊕b()

Here means taking the dot-products (which is the same as) and adding them up x • t x ⋅ ti i x ∧ ti i

modulo (which is the same as XOR-ing them). Well, when this is always just zero, so the 2 x = 0n

first term is and just drops out, leaving -1()0

.𝜙 0 b = -1 -1n 1

2n+1
()b ∑

t ∈ 0,1{ }n
()f t()

Note that the term is independent of the sum over , so it comes out of the sum---and this is why -1()b t
we get two equal possibilities in the original Deutsch's algorithm as well. Ths final point is that:

• When is constant, these terms are all the same, so they amplify---giving for the constant-f 1
2

false function and for constant-true. Both of these amplitudes square to and so together -1
2

1
2

soak up all the output probability, so that is measured with certainty.0n

• When is balanced, the big sum has an equal number of and terms, so they all interferef +1 -1
 and cancel. Hence will certainly not be measured.0n

Added: A randomized classical algorithm can efficiently tell with high probability whether is constant f
by querying some random strings. If it ever gets different answers then definitely is not f y ≠ f y'() () f
constant. (So, under the condition of the "promised problem," it must be balanced.) If it always gets
the same answer, then since any balanced function gives 50-50 probability on random strings, it can
quickly figure that is constant. But it is still the case that a deterministic algorithm needs f
exponentially many queries and hence exponential time.

