
CSE439 Fall 2024 Week 9: Shor's Algorithm

In general, a period of a function is a value such that for all , f r x

.f x + r = f x() ()

The string of the "promise property" in Simon's algorithm actually obeys this definition, even though it s
is a vector not a scalar. When Peter Shor read Simon's paper, he conceptualized that the final
Hadamard transform amplified the periodic structure in the form of peaks and troughs of waves. The
"trough" is how having made the two terms in the amplitude cancel, whereas having a • s = 1 a • s = 0
made them add with the same sign and hence concentrate the resulting probabilities on those cases.

Now, ahem, converting periodic structure into peaks is really the job of the Fourier transform, not the
Hadamard transform. And the Fourier transform does this with numeric data, not just binary-string data.
Shor conceptualized that replacing the final Hadamard transform with the quantum Fourier transform
(QFT) might allow a similar concentration that makes a numeric period emerge. And there is one r

such function and period of pre-eminent interest in cryptography... Incidentally, the QFT on qubits is n

just the same as the ordinary Discrete Fourier Transform (DFT) on vectors of length . The N = 2n

circumstance that the QFT can be applied with quantum effort---so the theory of quantum O n2

circuits tells us---is what makes the difference.

Periodic Functions

The important example of a periodic function is modular exponentiation:

.f x = a Ma() x mod

Here is a number in that is relatively prime to . This means that does not a 0, 1, … , M - 1{ } M a

share a prime divisor with . When is the product of two different primes and , this simply M M = pq p q

means that is not divisible by or by . If and did share a divisor , then would always be a a p q a M p ax

multiple of , and is also a multiple of because divides too. So you would not get all p a Mx mod p p M

of the possible values modulo . When is relatively prime to , what you always get is a number M a M

relatively prime to . This is worth spelling out more than the text does:M

Definition: .G = 1 ∪ a : 1 < a < M and a is relatively prime to MM { } { }

Theorem: forms a group under multiplication. GM

A group is a set with a distinguished element together with an operation that satisfies the G 1 ⦿

following axioms:

• For all , .g ∈ G g⦿1 = 1⦿g = g

• For all there is a unique such that and . We write .g ∈ G h ∈ G gh = 1 hg = 1 h = g-1

For example, the unitary matrices form a group with . Well, the numbers in modular n × n U U = U-1 *

arithmetic form groups that are simpler to understand.

When is a product of two primes, the size of is exactly . (The general name M = pq GM p - 1 q - 1()()

for the size of is the totient function of , devised by and often named for the mathematician GM M

Leonhard Euler.) The consequence of being a group that we need is:GM

Corollary: For all there is a positive integer such that . a ∈ GM r a ≡ 1 Mr mod

The least such is exactly the period of that we want to find. It always divides , so when r f xa() |G |M

 we get that divides . You might think this should narrow down the possibilities, M = pq r p - 1 q - 1()()
but:

• We don't actually get the value factored for us---we don't even know m = p - 1 q - 1()() m

because we don't know how to factor to begin with.M =: pq

• Compared to the number of bits or digits of , which is the complexity parameter we care n M

about, the range of numbers less than we might have to check is exponential in .m n

• By the way, the number in can be exponential in , so it looks like it takes too long to x ax n

compute to begin with. However, by iterated squaring modulo we can compute the f xa() M

following values in time: , , nO 2 a = a M1
2 mod a = a M = a M2

2
2 mod 4 mod

, , and so on up to a = a M = a M3
2
2 mod 8 mod a = a M = a M4

2
3 mod 16 mod

. Then we need only multiply together those such that a = a M = a Mn-1
2
n-2 mod n-1 mod ai

 as a binary number includes . This needs only multiplications and mod- reductions of x 2i 2n M

-bit numbers, so it is doable in time using an -time integer multiplication n nO 2 nO()

algorithm. (Or we can say time using the simple multiplication algorithm. The RSA O n3

cryptosystem uses modular exponentiation too---and this time is largely why your credit card
needed a chip.)

Nevertheless, if we do find the period ---for a "good" value which we stand a fine chance of picking at r a

random from ---then it was known long before Peter Shor found his algorithm in 1993 that we can GM

go on to find and by classical efficient means. p q

Theorem: There is a classical randomized algorithm that, when provided a function oracle

 some integer multiple of the period of , finds a factor of in expected g M, a =() f Ma mod M

polynomial time. That is, Factoring is in . BPPg

The proof is the entire content of Chapter 12. Lipton and I bundled this up into a separate chapter so
that instructors would have the freedom to skip it, as we'll do for the time being. (2024: It will be in a
replacement lecture done online via Zoom.) So we can focus on the task of finding (or at least a r

multiple of) via quantum means.r

Shor's Theorem: Factoring is in .BQP

Steps of Shor's Algorithm

1. Given , use classical randomness to guess a number between and .M a 2 M - 1

2. Use Euclid's algorithm to find . If it gives a number , then "ka-ching!"---we got a, Mgcd() c > 1

a divisor of . Since both and are below , we can recursively factor both of them.M c M / c M / 2

3. If it gives , then we know . In the important case, this had a, M = 1gcd() a ∈ GM M = pq

probability and so was pretty likely anyway. By the way, Euclid's algorithm also gives
p-1 q-1

pq

()()

you a number such that . But it doesn't give you this as a power of (to wit, b ab = 1 Mmod b a

as), which is what you'd need to get . b = a Mr-1 mod r

4. To give some slack, we choose a number and expand the domain of to Q = 2 ≈ Mℓ 2 f xa()

include in the interval up to , not just up to . The range is still to . So our x Q - 1 M - 1 1 M - 1

domain is in the range 0 to , which uses bits. This gives us quadratically many x 2 - 1ℓ ℓ ≈ 2n
"ripples" of the period, which in turn helps the trigonometric analysis in the body of the proof.

5. The quantum circuit begins with -many Hadamard gates, followed by a quantum q

implementation of the classical gates needed to compute modular exponentiation. This nO 1()

produces the functionally superposed quantum state

.𝛷 = f
1

N
∑

x∈ 0,1{ }ℓ

xf xa()

6. Apply the QFT (or its inverse) to the first qubits. ℓ

7. Then measure the whole result. Curiously, we ignore what happens in the " " portion of the f xa()

circuit. The fact that those final qubits were entangled with the first qubits is enough. So we n ℓ

let our output in the " -space" be the first bits of the measured result over the binary w x ℓ
standard basis.

My own quantum circuit simulator draws an ASCII picture of the Shor circuit, here for M = 21 = 3*7

(where I guessed), which gave since is the next power of after :a = 5 ℓ = 9 2 = 5129 2 M = 4412

But there isn't any more to the quantum circuitry than that. It's all simply: compute a giant functional
superposition and apply QFT (or its inverse) to it.

The analysis establishes that with pretty good probability already in one shot, the output reveals the y

period by a followup classical means. And with initial good probability over the choice of , the r a

resulting value unlocks the key to factoring . We will focus on understanding why the measured r M y

has much to do with the period to begin with. Then basic point---which has been known for centuries--r
-is that the Fourier transform converts periodic data to peaked data. Here is how the simple quantum
circuit above applies this fact.

The Intuition (See also Scott Aaronson, https://www.scottaaronson.com/blog/?p=208)

Let stand for the true period of . Let be any element of the group of size . Then r f a GM p - 1 q - 1()()

we will picture as a "crazy clock" that jumps units counter-clockwise at each time step. a a

https://www.scottaaronson.com/blog/?p=208

With fairly high probability, measurement---followed by figuring needed to get the guessed from the ri
measurement---yields a multiple of . The true is the least of the multiples. It is individually the most r r

likely value returned and is also returned with reasonable probability. A non-least might work anwyay. r

We can tell whether works by seeing if the classical part gives us or , else we just try the quantum r p q
process again.

Heading into the analysis, however, we need to say exactly what the measured string actually w

represents. In general, the angle represented by (when we actually use the complex plane to 𝛼 a
model the "crazy clock") will not be a whole-number fraction of the circle. But let us first suppose it is.
Then the smallest period (i.e., the true period) will go exactly once around the circle and back to angle r

 as represented by . So suppose is a correct guess of . Then with high probability, the output 𝛼 a ri r w

of the measurement has the same angle . Since angles add when we multiply complex numbers, this 𝛼

means takes us once around the circle. This in turn means that is the reciprocal of with regard r𝛼 𝛼 r

to the circle. So would be close to this reciprocal.w

In the general case, we have to go some number times around the circle before we get exactly back t

to . That is, we have with respect to the circle. So times whatever number represents a r𝛼 = t 𝛼 =
t

r
Q

the extent of once-around-the-circle in the units we are using. This finally means that should be w

close to in these units. The needs to be close enough to pull one final switcharoo: We don't know tQ

r
w

what is either, but from we get . Since has to be an integer, we just need to find a t w ≈
tQ

r
r ≈ t

Q

w
r t

that multiply the fraction into being real close to an integer. It turns out this will work when the Q

w

additive error in the measured relative to the "true amplifying direction" is at most in the w
tQ

r
±0.5

circle's units. Choosing high enough makes those units fine enough for this to work. The "analysis Q

a

𝛼t

r1

rjr2

r3
r9

r8

r7

r6

r4

r5

ri

C
K Each "guess" ri

"independently"
iterates the code:
Sleep timestepsri

so .t := t + ri

Move one unit in
the current
direction . 𝛼t

The guesses that are
close to a multiple of
the correct get highr
displacement and so
high amplitude.

Wrong guesses stay near 0
and so keep low amplitude.

The longer this runs, so
, the finer theQ ≈ M2

discrimination of the true .r

of the quantum part" tells how often the measured is close enough to be "good." (As was the case w

with Simon's algorithm, the text re-uses the letter " " to denote the particular string from the " -space" x x
that was obtained in the measurement.)

Simulation Interlude

Before we go to this analysis, let's see a brute-force simulation of Shor's algorithm. It pretty much
builds the concrete "mazes" for qubits and simulates all the legal "Feynman mouse paths" ℓ + n

through them. The run of my simulator on and succeeded on the second try:M = 21 a = 5

The detailed analysis from chapter 11 (continuing into chapter 12) will come in week 10.

