
CSE439/510 Lecture Tue. Aug. 27: Quantum Computing Overview
 
Philosophy I: "Simple Realism"   

• Show polarizing filters.  (Link to chapter with photo.)
• Show part of talk https://cse.buffalo.edu/~regan/Talks/UnionCollege52115.pdf

 
Philosophy II: Is Nature Lexical?

• The idea of Logos from 500 BCE.  Identified, perhaps incorrectly, with "word".
• The possible meaning of the final sentence of Umberto Eco's novel The Name of the Rose, 

quoting Bernard of Cluny, 1100s:
 

Stat rosa pristina nomine; nomina nuda tenemus  
 
This means: The [original] rose abides (as a/by its) [original/former] name; we hold the bare name.  It is 
possibly a misquote of "Stat Roma..." meaning that we (in the 1100s or 2000s) only know the glory of 
ancient Rome through recorded memory of it.  I, however, subscribe to a deeper reading that treats 
"pristina" as meaning "unsullied" rather than "original" and takes some liberties with grammar:
 

The rose abides unsullied by a name; we hold only the bare name.
 
Regarding the rose as representing Nature, the issue is whether Nature's workings must be read as 
paying heed to the symbolic way we describe them.  The (theoretically-)efficient quantum factoring 
algorithm is a real challenge to the idea that nature is symbolically mathematical.
 
 
Quantum States
 
[Note: I have edited the following to number from zero in "underlying co-ordinates" as in the text.  This 
is different from how most linear algebra texts do it.  It will however be conventional to number 
"quantum coordinates" from 1.]  Natural systems can be modeled (inefficiently!?) by vectors
 

 .a =  

a0

a2
a3
⋮
ai
⋮

aN-1
 
We say that  has  "underlying coordinates."  Often  will be a power of , , where  will be a N N 2 N =  2n n
the number of "quantum coordinates" or qubits.  We can also have powers of larger numbers , d

.  When  we will get qutrits,  will give quarts, and the general case gives qudits.  N =  dn d = 3 d = 4

 

 

https://cse.buffalo.edu/~regan/cse491596/LRQmitbook2pp131-147.pdf
https://cse.buffalo.edu/~regan/Talks/UnionCollege52115.pdf


Maybe over 99% of the "QC" literature is about qubits.  But actually, let's first think of  as not being N
subdivided at all.
 
One insight of linear algebra is that the entries  are not just "things unto themselves" but stand for ai
multiples of corresponding basis vectors:
 

,a  =   a  e  +  a  e  +  a  e  +  ⋯  +  a  e  +  ⋯  a  e0 0 1 1 2 2 i i N N

 
where for each ,i
 

e   =   0, 0, 0, … , 0, 1, 0, … , 0i [ ]T
 
with the lone 1 in position .  Notice we're being picky about considering vectors to be column vectors i
and writing transpose  to make  be a column vector.  (Whether Nature really makes this distinction is T ei
a real question.  We took the "no" side in the first edition, but using the angle-bracket notation from 
physics makes an initial commitment to the "yes" side.)  With this notation, the vectors  are ei
collectively called the standard basis.
 
A second insight of linear algebra is that one need not be "wedded to the standard basis"---one can do 
a change-of-basis.  In general -dimensional linear algebra, any set of  linearly independent vectors N N
can be a basis.  For instance, in  dimensions, the vectorsN = 2
 

   and   1, 0[ ] 0.6, 0.8[ ]
 
are linearly independent (since there are only two vectors, the point is that neither is a multiple of the 
other).  However, the second one is kind-of redundant in the first coordinate with the first.  Whereas 

 is "only East" and   is "only North"---they are orthogonal, meaning that their e  =  1, 00 [ ] e  =  0, 11 [ ]
inner product is zero.  
 

 

 

1, 0[ ]

0, 1[ ]

0.6, 0.8[ ]

"East"

"North"

0.8, -0.6[ ]



 
We can diagram these vectors on the unit circle---note that .  The 0.6  +  0.8  =  0.36 + 0.64 =  12 2

inner product of  and our "East" vector is .0.6, 0.8[ ] 0.6 ⋅ 1 +  0.8 ⋅ 0 =  0.6
 
There are several ways to write the inner product of two vectors  and :a b
 

,     ,    .a ∙  b ⟨a, b⟩ ⟨a | b⟩
 
The last is what feeds into Dirac Notation, as the bra(c)ket of the row vector  and the column ⟨a|
vector .  I will mention alongside various notations in chapter 2 and onward, but not require it.  In |b⟩
order to motivate the notation scheme, I will briefly jump ahead to the topic of tensor products (chapter 
3, section 3.2) but come right back out of it.
 
 
Tensor Products
 

When you think of matrices and vectors, the first idea that pops into mind is the ordinary matrix product 
 of an  and an  matrix.  But this is "lossy," whereas concatenation must be lossless AB ℓ ×  m m ×  n

(except possibly for memory of the place where the strings got concatenated).  Instead, Nature uses 
tensor product, which applies also to vectors and doesn't need the "shapes" of the operands to agree.
 
Here are some handwritten and typeset examples.
 
 
 

 

 



 
 
[Pickup of lecture 2 was here]
 
An -qubit quantum state is denoted by a unit vector in  where .  Thus, a 2-qubit state is n CN N =  2n

represented by a unit vector in .   That takes up  real dimensions.  There are tricks that get this C4 8
down to a 6-dimensional hypersurface in , but until we have a Hyper-Zoom able to help us visualize R7

7-dimensional space, we have to rely on linear algebra and some general ideas about Hilbert Spaces 
(that don't care whether they are real or complex).
 
One of those ideas is the standard basis.  In 4-space, this is given by the vectors:
 

.e  =  1, 0, 0, 0 ,  e  =  0, 1, 0, 0 ,  e  =  0, 0, 1, 0 ,  e  =  0, 0, 0, 10 ( ) 1 ( ) 2 ( ) 3 ( )
 
The indexing scheme for quantum coordinates changes the labels to come from  instead of 0, 1{ }2

 

 



from , using the canonical binary order .  Then we have:1, 2, 3, 4{ } 00, 01, 10, 11
 

.e  =  1, 0, 0, 0 ,  e  =  0, 1, 0, 0 ,  e  =  0, 0, 1, 0 ,  e  =  0, 0, 0, 100 ( ) 01 ( ) 10 ( ) 11 ( )
 
The big advantage is that these basis elements are all separable and the labels respect the tensor 
products involved:
 

 =  e  =  1, 0, 0, 0  =  1, 0 ⊗ 1, 0  =  e  ⊗  e  =  ⊗  =  00 00 ( ) ( ) ( ) 0 0 0 0 0 0
 =  e  =  0, 1, 0, 0  =  1, 0 ⊗ 0, 1  =  e  ⊗  e  =  ⊗  =  01 01 ( ) ( ) ( ) 0 1 0 1 0 1
 =  e  =  0, 0, 1, 0  =  0, 1 ⊗ 1, 0  =  e  ⊗  e  =  ⊗  =  10 10 ( ) ( ) ( ) 1 0 1 0 1 0
 =  e  =  0, 0, 0, 1  =  0, 1 ⊗ 0, 1  =  e  ⊗  e  =  ⊗  =  11 11 ( ) ( ) ( ) 1 1 1 1 1 1

 
It is OK to picture the tensoring with row vectors, but because humanity chose to write matrix-vector 
products as  rather than , they need to be treated as column vectors.  This will lead to cognitive Mv vM
dissonance when we read quantum circuits left-to-right but have to compose matrices right-to-left.  
Lipton and I are curious whether a "non-handed" description of nature can work.
 
There is an even more immediate "left-right" issue to get to.  What the text in chapter 2 calls the 
canonical numbering of strings is actually a choice.  For two qubits, the above amounts to:
 

00 =  0
01 =  1
10 =  2
11 =  3.

 
This is indeed canonical in being how we write binary numbers.  It also orders the (same-length) binary 
strings in lexicographical order, as used by ASCII.  However, this makes column 1 (which we will 
soon call "qubit 1") the most significant bit.  This is big-endian.  The other way is to make the leftmost 
column be the least significant bit:  
 

00 =  0
10 =  1
01 =  2
11 =  3.

 
This is little endian.  Here are the comparisons for length-3 strings:
 

 

 



 
An important curveball with little endian is that the relation to tensor product of basis elements does not 
work---it needs another reversal.  For instance:
 

 is still  in little-endian, because the order of  and  by themselves is the same.e0
1
0

0 1

But  rather than  because  now comes before  in little-endian.  And:e  =  01

0
0
1
0

0
1
0
0

10 01

 

 which alas is not the index for .  You have to e  ⊗  e  =  ⊗    =     =   0 01
1
0

0
0
1
0

1 ⋅

0
0
1
0

0 ⋅

0
0
1
0

0
0
1
0
0
0
0
0

001

flip the tensor product too:
 

which is the basis vector for  in little-endian.e  ⊗  e   =   ⊗  =    =     01 0

0
0
1
0

1
0

0 ⋅ 1
0

0 ⋅ 1
0

1 ⋅ 1
0

0 ⋅ 1
0

0
0
0
0
1
0
0
0

001

 
 
Where this really matters is when we write qubits going down rather than across, like notes on a 
musical staff:

 

 

Big End ian
000 = 0
001 = 1
010 = 2
011 = 3
100 = 4
101 = 5
110 = 6
111 = 7

Little End ian
000 = 0
100 = 1
010 = 2
110 = 3
001 = 4
101 = 5
011 = 6
111 = 7



 
However, we can mentally convert if we imagine rotating this 90 degrees right and reading across---so 

 is in the leftmost column and gets read as if it were " ", etc.  Some other discussion:x4 x1
 
https://quantumcomputing.stackexchange.com/questions/8244/big-endian-vs-little-endian-in-qiskit
https://pasqal-io.github.io/qadence/v1.5.2/content/state_conventions/
 
We will use Big Endian officially in this course---needing Little Endian only to read optional quantum 
circuit widgets that use it.
 
 
Tensor products can be repeated---but they get exponentially big when you do so.  Simply for instance:
 
e ⊗  e  ⊗  e  =  e ⊗ e ⊗ e  =  1, 0, 0, 0 ⊗  e  =  1, 0, 0, 0, 0, 0, 0, 0  =  e0 0 0 ( 0 0) 0 ( )T 0 ( )T 000
 
e  ⊗  e  ⊗  e  ⊗  e  =  e ⊗ e  =  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0  =  e0 0 0 0 000 0 ( )T 0000
 

a  followed by 255 s .e   =  e  =  ⊗8
0 00000000 ( 1 0 )

 
 
 
 
 
Time Complexity and O-Notation
 
The number  will generally stand for "the total number of unit-size data points."  The concepts "time at n
most order-of", "time proportional to", and "vanishingly smaller than" are necessarily rough.  We can, 
however, give a precise mathematical definition of them in a way that incorporates their roughness:
 
The key definition is: Given two numerical functions  and ,f n( ) g n( )
 

•  if there are constants  and  such that for all , .f n  =  O g n( ) ( ( )) c n0 n ≥  n0 f n  ≤  c ⋅ g n( ) ( )
•  if  and .f n  =  𝛩 g n( ) ( ( )) f n  =  O g n( ) ( ( )) g n  =  O f n( ) ( ( ))

 

 

https://quantumcomputing.stackexchange.com/questions/8244/big-endian-vs-little-endian-in-qiskit
https://pasqal-io.github.io/qadence/v1.5.2/content/state_conventions/


•  if the limit of  goes to 0 as  goes to infinity.f n  =  o g n( ) ( ( )) f n / g n( ) ( ) n
 
 
 
 
 

 
 
 
 

 

 



 
More examples of curves, tradeoffs, and the role of the leading constant are in the graphs of Jim 
Marshall from a course at Sarah Lawrence:
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html

 

 

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html


 
 
Some useful instances:
 

which is still  exponential in . =   = 2  =  2  N 2n n 1/2 n/2 2𝛩 n( ) n
 

But .2  =  2  =  n  =  polynomialO n(log ) n(log ) O 1( ) O 1( )

 
 

Concretely with 3 as the "constant in the ":  .O 2  =  2  =  n  =  polynomial3 n(log ) n(log ) 3 3

 
 
Computational Complexity
 
We have talked about the running times of Turing machines algorithms in general, already.  It is finally 
time to formalize this.  We will call a collection  of classical Boolean (or quantum) circuits, where C{ n }
each  handles data of size , a single "machine" or "algorithm"---presupposing that the  have Cn n Cn
common characteristics for any individual .n
 
Definition: 

1. Given a function , a machine  runs in time  if for all  and inputs  of length t :  N N→ M t n( ) n x
, within  steps.n M x ↓( ) t n( )

2. Given a function , a machine  runs in space  if for all  and inputs  of length s :  N N→ M s n( ) n x
, while changing the character in at most  tape cells.n M x ↓( ) s n( )

3. A nondeterministic Turing machine runs within a given time or space bound if all of its possible 
computations obey the bound.

 
Note that although a computation can "loop" within a finite amount of space, the machine is not 
regarded as running within that space (in practice, the activation stack or some other tracker would 
overflow).  When the input tape is read-only, the space measure is essentially equivalent to the number 
of cells accessed on the initially-blank worktapes.  For some examples:
 
 
Definition: For any time function  and space function , using  to mean DTM and t n( ) s n( ) M

:N for NTM
1. DTIME t n  =  L M :  M runs in time t n[ ( )] { ( ) ( )}
2. NTIME t n  =  L N :  N runs in time t n[ ( )] { ( ) ( )}
3. DSPACE s n  =  L M :  M runs in space s n[ ( )] { ( ) ( )}
4. NSPACE s n  =  L N :  N runs in space s n[ ( )] { ( ) ( )}

 
Convention: For any collection  of time or space bounds, in particular one defined by -notation, T O

 

 



 means the union of  over all functions  in , and so on.DTIME T[ ] DTIME t n[ ( )] t n( ) T
 
Definition (some of the "Canonical Complexity Classes"):

1. P =  DTIME nO 1( )

2. NP =  NTIME nO 1( )

3. .  Also called just  for "Logspace."DLOG =  DSPACE O n  [ (log )] L

4. .  Also called just  for "Nondeterministic Logspace."NLOG =  NSPACE O n  [ (log )] NL

5. PSPACE =  DSPACE nO 1( )

6. .EXP =  DTIME 2nO 1( )

 
The only class we know to contain languages not in  is the last one: we know .  Regarding P P ⊊  EXP
line 5, it seems we've skipped an analogously-defined class " " but it actually equals NPSPACE

. Right now  and , along with co-  will take center stage.  Here PSPACE P NP NP =  ∼ L :  L ∈  NP{ }
co- means problems where a lucky guess can confirm a no answer---which are the complements of NP 
problems where a lucky guess can confirm a yes answer.  
 
A protypical problem about -vertex graphs  is: given a start node  and a target node , is there a n G s t
path from  to ?  (And if so, can you find such a path?)  Here the lucky guess (in the "yes" case where s t
a path really exists) is a series of right choices of next step to take, without going into a dead end or a 
vicious cycle.  The only memory you need to keep is your current vertex  in the path---we suppose that v

 itself is given as read-only input that you can consult at will for free.  Since  can be a binary number G v
from  to , and since you can forget  once you make the next good step along an edge to a vertex  1 n v v'
in , you only need to maintain  bits of modifiable storage.  That is what classifies the problem G O n(log )
into Nondeterministic Logspace.
 
The notion of a "lucky guess" is the same as saying there exists a solution that you can verify in 
polynomial time.  This is symbolized by an existential quantifier with a little  superscript.  When a "no" p
answer is prone to a lucky guess, it may mean that a "yes" answer requires all possibilities to confirm 
"yes".  This is symbolized by a universal quantifier with  superscript---like so:p
 

 

 



 
When a lucky guess works for both the "yes" and "no" cases, the problem is in co- .  We note NP ∩  NP

this below for a natural way to express the task of factoring a number  by yes/no questions that can N
narrow down a factor.  In both cases, the "lucky guess" is the entire unique prime factorization of .N
 
 
Problems in NP and co-NP        [Lecture got as far as SAT, 3SAT, G3C,and TAUT]
 
It is usually easiest to tell that (the language of) a decision problem belongs to  by thinking of a NP

witness and its verification.  For example:
 
Satisfiability (SAT):
Instance: A logical formula  in variables  and operators .𝜙 x , … , x1 n ∧ , ∨ , ¬
Question: Does there exist a truth assignment  such that ?a ∈ 0, 1{ }n 𝜙 a , … , a  =  1( 1 n)
 
The assignment cannot have length longer than the formula, and evaluating a formula on a given 
assignment is quick to do.  Hunting for a possible satisfying assignment, on the other hand, takes up to 

 tries if there is no better way than brute force.  This is apparently hard even when the Boolean 2n

formula has a simple form.
 
Definition. A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses

,𝜙 =  C  ∧  C  ∧  ⋯  ∧  C1 2 m
 
where each clause  is a disjunction of literals  or .  The formula is in -CNF if each clause has at Cj xi x⏨i k

 

 

P

NP co-NP
∃p ∀p

PSPACE

EXP



most  distinct literals (strictly so if each has exactly ).  k k
 
3SAT
Instance: A Boolean formula  in 3CNF.𝜙 x , … , x  =  C  ∧  C  ∧  ⋯  ∧  C( 1 n) 1 2 m

Question: Is there an assignment  such that ? =  a a ⋯ a  ∈  0, 1a 1 2 n { }n 𝜙 a , … , a  =  1( 1 n)
 
Now for a problem with a different kind of witness:
 
Graph Three-Coloring (G3C):
Instance: An undirected graph .G =  V, E( )
Question: Does there exist a 3-coloring of the nodes of ?G
 
A 3-coloring is a function  such that for all edges , .  The 𝜒 :  V R, G, B→ { } u, v  ∈  E( ) 𝜒 u  ≠  𝜒 v( ) ( )
table for  needs only  entries where , so it has length at most linear in the 𝜒 n n =  |V| ≪  N =  |G|
encoding length  of  (often .  And it is easy to verify that a given coloring  is correct.N G N ≈  n2) 𝜒
 
PRIMES    (encoded as, say, )=  2, 3, 5, 7, 11, 13, 17, 19, 23, …{ } 10, 11, 101, 111, 1011, …
 
This language was formally shown to belong to  only in 2004, but had long been known to be "almost P

there" in numerous senses.  But now consider this one:
 
FACT:
Instance: An integer  and an integer .N k
Question: Does  have a prime factor  such that ?N p p ≤  k
 
If you can always answer yes/no in polynomial time , where  is the number of bits in , r n( ) n ≈  Nlog2 N
then you can do binary search to find a factor  of  in time .  By doing  and p N O nr n( ( )) N' =  n / p
repeating you can get the complete factorization of  in polynomial time.  This is something that the N
human race currently does not want us to be able to solve efficiently, as it would (more than Covid?) 
"destroy the world economy" by shredding the basket in which most of our security eggs are still 
placed.  (This is the gist of the 1992 movie Sneakers with Robert Redford heading an all-star cast.)  But 
to indicate proximity to this peril, we note:
 
FACT: FACT is in co- .NP ∩  NP

 

Proof: The witness for "no" as well as "yes" is the unique prime factorization .  N =:  p p ⋯ pa
1

1 a
2

2 a
ℓ

ℓ

Although the right-hand side may seem long,  cannot be bigger than the number of bits of  in binary ℓ N
because each  is at least , and bigger powers only make  have to be smaller.  The length of the pi 2 ℓ
factorization is .  To verify it, one must verify that each  is prime---but this is in polynomial time as O n( ) pi
above---and then simply multiply everything together and check that the result is .  Finally, to verify N
the yes answer, check that at least one of the  is ; no if none.  pi ≤  k

 

 



 
TAUT:
Instance: A Boolean formula , same as for SAT.𝜙'
Question: Is  a tautology, that is, true for all assignments?𝜙'
 
Note that  is unsatisfiable every assignment  makes  false every assignment  makes 𝜙 ≡ a 𝜙 a( ) ⟺ a

 true, where .  Thus TAUT is essentially the complement of SAT.𝜙' a( ) 𝜙' =  ¬𝜙
 

 

 

 

P

NP co-NP

TAUT
SAT,G3C

REG

∃p ∀p

FACT

PRIMES




