
CSE491/596, Fall 2021 Problem Set 3 Due Wed. Oct. 27

Lectures and Reading (similar to last year’s Assgt. 4) Starting from Debray’s notes back
in section 9, Wednesday’s lecture will pick up the example in Theorem 9.1 but relate it to
ALLTM . Skim the discussion of Post’s Correspondence Problem. The first part of section 10,
Theorem 10.2, will be covered later in-tandem with Theorem 13.12 when we begin complexity
theory on Friday. Skip page 30 with the subject of “oracles”—IMHO it has limited value until
late in the complexity theory unit where binary search becomes a quintessential example of
an oracle process. But page 31 picks up with useful examples of the kind also slated for the
Wed. 10/20 lecture, when also Rice’s Theorem will be proved by applying the all-or-nothing
switch idea as a filter, pretty much as Debray does it on page 32. From there until the end of
section 12, the material becomes presentation options as detailed further below. This all will
enable us to connect section 13 to what has been going on in sections 8–10. Likewise the first
half of section 14—but stop before Theorem 14.9 on page 46 of the notes.

———- Assignment 3, due Oct. 27 “midnight stretchy” on CSE Autograder ———-

(1) Give in pseudocode a decision procedure for the following problem:

Instance: Three DFAs MA,MB,MC .

Question: Does MC accept every string that is accepted by both MA and MB? I.e., is
L(MC) ⊇ L(MA) ∩ L(MB)?

Also say and justify whether your algorithm runs in polynomial time. (18 + 6 = 24 pts.)

(2) Given a Turing machine M , say that a string x ∈ Σ∗ is “covered” by M if for each
character xj in x, there is a substring w of x including xj that M accepts. Put another way,
for each j there are i, k such that i ≤ j ≤ k and x[i . . . k] is in L(M). Let C(M) stand for
the language of strings covered by M . Note that C(M) includes L(M), since every string in
L(M) covers all its characters in one go, but C(M) can be larger. A tricky example is that the
language of even-length palindromes covers the string abbaababbaba via the three substrings
abba, baab, and ababbaba.

(a) Show that if M is total, then C(M) is decidable. (15 pts.)

(b) What if M is not total—is C(M) still at least computably enumerable? Justify your
answer. (6 pts.)

(c) Suppose M runs in O(n) time, where n = |x| as usual. Does your algorithm in part (a)
run in O(n) time, or are you taking quadratic or cubic time? (6 pts., for 27 total)

(3) Prove by a mapping reduction from ATM that the (language of the) following decision
problem is undecidable:



Instance: A deterministic Turing machine M with 2 tapes, and an input x to M .

Question: Does M(x) eventually write a non-blank character on Tape 2?

Also explain why the language of this problem is computably enumerable. (18 + 3 = 21 pts.)

(4) Prove by mapping reductions that the language of the following decision problem is
neither c.e. nor co-c.e. You may use any suitable problems as sources of your reductions,
though the basic choices A1 = ATM (or KTM) and A2 = DTM can always be made to work.

Instance: A deterministic one-tape Turing machine M with alphabet Σ = {0, 1}.
Question: Is L(M) = 0∗, i.e., does M accept exactly the binary strings without a ‘1’ in

them?

(Note that quoting Rice’s Theorem would only give you undecidability. 2× 18 = 36 pts., for
108 total on the set)


