
CSE491/596, Fall 2021 Problem Set 5 Due Mon. Nov. 22

Reminder: The Second Prelim Exam will be on Wednesday, Dec. 1, in class period. It
will have the same rules and in-person logistics (with registered exception) as the first exam.

Lectures and Reading:

Wednesday’s lecture will finish proving the PSPACE-completeness of the TQBF problem
from ALR chapter 28, section 5. We have already shown that GAP is complete for NL under
≤log

m , and it will be quick to observe that the Circuit Value Problem (CVP) is complete for
P under ≤log

m . The remaining pieces covered Friday and next Monday will be: oracle Turing
machines and polynomial-time Turing reductions (ALR ch. 28 calls them “Cook reductions”),
classical probabilistic computation, and the class BPP. All of these topics are in the last
sections 17–19 of Debray’s notes, though not in that order. Classical probability will be the
springboard for the last five lectures on quantum computation—reading will be given from
selected chapters of my textbook with Richard Lipton for over Thanksgiving.

This homework is due on a Monday. There will be extended 10–11pm online evening
office hours both Wednesday and next Monday before it is due.

———- Assignment 5, due Nov. 22 “midnight stretchy” on CSE Autograder ———-

(1) (24 pts.)

Show that the following problem is NP-complete.

Perfect Dominating Set
Instance: An undirected graph G, an integer k ≥ 1.
Question: Is there a set S of at most k nodes such that every other node is adjacent

to exactly one node in S?

Note: This is not the same as the standard Dominating Set problem. In a 3-node triangle
graph, any one node forms a perfect dominating set, but the 5-node pentagon graph does not
have any perfect dominating set of size 2. (There is an ambiguity of whether it is OK for a
node in S to have neighbors in S. If yes, then the pentagon graph has perfect dominating sets
of size 3. If not, then it has no perfect dominating set at all—the only n-cycle graphs that do
are when n is a positive multiple of 3. You may take either interpretation.)

(2) (24 pts.)

Give a polynomial-time many-one reduction from 3SAT to the following mathematical
problem:

Instance: A formula for a polynomial p in n variables with integer coefficients.

Question: Does p(x1, . . . , xn) = 0 have a solution in which all the xi are 0 or 1?

This shows that it is NP-hard to solve given systems of equations of the form p(x1, . . . , xn) = 0,
x21 = x1, x

2
2 = x2, . . . , x2n = xn over the real numbers. Show also that this is NP-complete.

Notes: The formula for p need not be “multiplied out” as in p = x21−x22−x23 +2x2x3—you
must also be prepared for the instance p to be given in other forms, such as the “factored



form” (x1 − x2 + x3)(x1 + x2 − x3). The factored forms are what make this problem hard.
For your reduction, think of polynomials of the form q− 1 where q is in “factored form.” You
do not need to use the Cook-Levin Theorem or its proof for this problem, though you may
find that some of its properties simplify the reduction a bit. (Don’t forget to show why the
language of the problem belongs to NP; this is 6 of the 24 points.)

(3) (5 × 6 = 30 pts.) For each of the following stated relationships between complexity
classes, say whether it is known to be true or not. In all cases where it is “known,” you
can prove it by applying theorems that were covered. Where you say “not known,” explain
why the theorem comparing the two complexity measures involved fails to yield the stated
relationship. Note that E = DTIME[2O(n)] and EXP = DTIME[2nO(1)

].

(a) NSPACE[(log n)2] ⊆ P.

(b) PSPACE ⊆ E.

(c) NP ⊆ EXP.

(d) P ⊆ DSPACE[n2].

(e) NSPACE[O(n)] ⊆ E.

(4) (30 pts.)

Consider the following decision problem:

Cycling DFA
Instance: A DFA M = (Q,Σ, δ, s, F ) and a string x ∈ Σn where Q = {1, 2, . . . , n}.
Question: Does M on input x visit every one of its states and end up back at its

start state s?

(a) Sketch a deterministic Turing machine M that decides this problem in O(log n) space. It
is enough to diagram the worktapes of M and say what information each one maintains
while sketching the algorithm in pseudocode. (18 pts.)

(b) Now sketch a faster algorithm that uses linear space. You may use the fact that Turing
machines can execute mergesort at full O(N logN)-time efficiency in O(N) space, where
we may suppose that N is the total bit-length of the given list of binary numbers.
Estimate its running time and compare with your answer to (a). (12 pts., for 30 on the
problem and 108 total on the set).


