CSE596, Fall 2022 Problem Set 2 Due Thu. Oct. 6

Lectures and Reading. This week moved on to Turing machines. The attention in early
lectures was on “gritty” character-level detail, but the purpose by next week will be to
move away from it. The essence is conveyed in the diagram https://cse.buffalo.edu/ re-
gan/cse396/UTMRAMsimulator.pdf of how a TM can simulate a random-access machine
(RAM), really a miniature but serviceable assembly language. Since the assembly language
could be a “virtual” compilation target for any (known) high-level Inguage (HLL), this es-
tablishes the equivalence of TMs and HLLs, which is major evidence for the Church-Turing
thesis (CTT).

In fact, ¢ steps of the RAM can be simulated by O(t*) steps of the TM. Steven Cook—in
a less-famous theorem he proved in 1970-71—improved this to O(t?) by a caching strategy
roughly similar to how C++ vector amortizes space by doubling the size when needed.
Under “fair-cost” RAM time, which counts one time unit per bit of the operands in a step
rather than “unit cost” which just counts steps—Cook showed O(#?). The target TM in all
cases has 3 or 4 tapes, and there is a further O(#*) overhead for getting that down to one
tape (as will be sketched in class, Theorem 7.6 on page 22 of the notes). So going from time
as reckoned in an algorithms course to a single-tape TM could multiply the exponent by 8,
but that’s OK in this sense: a polynomial running time 7°® remains #n°®. Thus TMs and
HLLs are equivalent up to polynomial time. This led to a polynomial-time CTT, which is
challenged by quantum computers.

For our purposes now, CTT says that the notions of decidability and undecidability
defined formally via Turing machines are general and robust concepts. Next week will define
computational decision problems (per section 8 of Debray’s notes) and discuss decidable
and undecidable problems. Instead of making Ary or its complement the first undecidable
problem, lecture will introduce the “Diagonal Language”

D7y = {x : x is the code of a TM that does not accept x}.

The idea of this language is handled in the proof of Theorem 8.5 by making “D” a hy-
pothetical machine, but it is much better IMHO to minimize hypothetical quantities and
focus instead on the concrete definition of a language. By showing that Dty is not even
computably enumerable (that is, not the language accepted—Ilet alone decided—by any
TM), we will show that Ay is undecidable. Then we will use mapping reductions to show
more undecidable problems—so for a week from now, please start section 9 in the new set
of notes. Please read ahead to the course notes that cover this progression of undecidable languages.

(1) Prove that two of the following three languages are non-regular, via a Myhill-
Nerode argument. For the regular one, give a regular expression. Here #a(x) denotes the
number of occurrences of the character a in the string x, and more generally, #w(x) denotes
the number of occurrences of the substring w in x. For example, #0010(00100100) = 2 even
though the two occurrences of the substring 0010 overlap each other. Also, for two strings
x, y of the same length, x ® y denotes the bitwise exclusive-OR, e.g. 1011 ® 0010 = 1001. All
three languages are over the alphabet X = {0, 1}.

(i) Ly = {x : #0(x) < #1(x)}.


https://cse.buffalo.edu/~regan/cse396/UTMRAMsimulator.pdf
https://cse.buffalo.edu/~regan/cse396/UTMRAMsimulator.pdf

(i) L, = {x : #01(x) = #10(x)}.

(iii) Ly = {xy: x| =yl Ax @y = 1M},

(3x12 =36 pts.)

(2) Now consider Ly = {x : #010(x) = 0 A #101(x) = 0}. Use the Myhill-Nerode
technique to show that any DFA M such that L(M) = L, requires at least 6 states. Then
design such a DFA M—ideally showing how your proof guided you to it (or vice-versa).
Finally explain why you can basically “collapse” M into a generalized NFA with only 2
states s, f such that

L(M) = Lss U LS,f U Lf/s U Lf,f,

and use that to give a regular expression for L. (12 + 6 + 9 = 27 pts.)

(3) Design a two-tape deterministic Turing machine M, that recognizes the language
Ly = {x#Ok#y cx, ¥y €{0,1), x =y A |x| = k}.

Here X = {0, 1, #} but the # character is only allowed as a marker to divide the input string
w into thirds. Your M, should run in O(n) time where n = |w|; note that any accepted string
gives n = 3k + 2 with k as above. A well-commented arc-node drawing is fine; if you use
the Turing Kit, please take a screenshot since its own Postscript-based print feature is old
and may be wonky:.)

Then argue as best you can that every single-tape TM M, such that L(M;) = L;
requires Q(n?) time. Since 7 is linear in k, it may help to think of this as Q(k?) time. Start by
showing that S = {0, 1}¥is PD fopr L3. Then argue that this means k bots of information must
somehow cross the middle 0F part in order to decide y = x correctly. Finally reckon how
much total time M; must spend in that middle region, noting that M has a fixed number
r = |Q| of states but k can grow. (18 + 18 = 36 pts., for 99 on the set)



