CSE491/596 Categories and Diction, then Examples of Reductions

Elements/Objects Attributes/predicates/verbs

1. string = list<char> (a) "Halts" -4 a2 "run forever" - 4, not any inst. of 2
2. Language = set<string> (b) "Decidable" -3 and 5

3. Class = set<Language> (c) "accepts" - 4

4. (d) "be accepted by ..." 1 meaning x € L(M), 2 as L(M)

5. Decision Problem = Language meaning "the language [of strings] accepted by a machine"

(e) is c.e. --- machine? class? The person saying "machine" probably meant to allow for the point that
a given machine might not halt for all inputs. The person saying "class" either meant that RE is a class
of languages, or means that any class of Turing machine languages like P or NP must be a subset of
RE. Grammatically, as a matter of diction, only a language can have the attribute of being c.e. A
decision problem---?---the preferred term then is partially decidable (on the 'yes' side).

(f)"ends ina'0' " --- ? Strictly it's only string. But maybe you have in mind the language Eg = {x: x

ends in a 0}. Or the regular expression (0 + 1)*0.

Some Common Fallacies:

1. Subsets: "Any-subset-of-a-deeidable-tanguage-is-deeidable:" Exposing it: 2™ is a decidable

language, in fact a regular language, but the mega-undecidable language ALLTy, is a subset of X*
2."If L is undecidable then L is c.e."

3. Intension vs. Extension: "Isn't ALL T, the same as X*?"
ALLTy, is the language of codes (M) of machines /I such that L(M) = X*.

As languages, ALLtp; and Eqy; are disjoint, i.e., ALLtyy N E7py = @ which is saying that the
condition on the set {(M>: L(M) = X* and L(M) = @} is incompatible.

[The recitation went into a long discussion of the fact of the ALL), language not literally "being" X*
and why it is a proper subset of X*---because it includes strings like (M) for the machine M; below
but not (M) for the machine M, whose language is @.

(0/0,R) (0/0,R),
(1/4R) (1/8>
My My
Sidsanc L(My) = @

[The last prepared example of the recitation was about how reductions can be "plus and play" when
you vary particulars of what is done before or after a simulation. The idea is to trace out the logical

analysis that results. It involved the following problem, which was given for homework in a recent year.
| originally defined it without the primes, i.e. just saying M everywhere, but explained how that can lead
to confusion between the source M in the reduction and the "target property."]

OnlyEps
INST: A Turing machine M"’.
QUES: Is L(M"") = {e}? Thatis, does M"" accept € but no other string?

Here are diagrams of reductions showing A1y < ,, OnlyEps and then Dy < ,, OnlyEps .

y input x \ input x
| ifx # ereject | |w|

(M, w) i M =

Simulate M(w) imulate M(M)

<M> é M// =

lf futler ik accepts if & when it accepts

ccept x.
(only x = € by here)

ccept x.
(all x # € by here)

if M arrante &

M accepts w = L(M’) = {e} Thus (M, w) € Aty = (M) € OnlyEps
M,wy ¢ Apyy = LIM') =2 = (M’) ¢ OnlyEps.

M accepts (M) = L(M"”) =X* Thus: (M) ¢ Dy = (M”") ¢ OnlyEps
M does not accept (M) = L(M") = {e} Thus: (M) € D1y = (M"") € OnlyEps

Other variations on the theme can put the test for x = € after rather than before:

Mx/\/ \ input x
| |

letn = |x|
Simulate M(w)

f g imulate M(M) accept x.
(M, w) = M’ =\ 5 uhen it accepts (M) > M" = for i ia T Siaps hasandasad
| ifx=eaccept | if it accepts within that i
| else reject|
\. eject x

accept | accept x iff x is a palindrome

(only x = € by here)
accept x. @

M accepts w = L(M') = {e} = M’ € OnlyEps
M,wy ¢ Apyy = LIM') =2 = M’ ¢ OnlyEps.

M € Kryy = L(M’) = {all palindromes of length greater the # of steps M took to accept (M)}
— L(M"’) is nonregular.

M¢ Ky = L(M”) = @ = L(M”)isregular. Thus Krpr <, ~ Igeg, i.€. Dt < m Ireg
Thus Iz is not c.e.

For self-study, do the correctness logic on these reductions. Also make the second one work with the
"delay switch" idea. It turns out that the OnlyEps language is in the least = ,, equivalence class of
languages that reduce from both K and D. In particular, it is lower than ALLty; and TOT.
[Technically, OnlyEps and K and D are all in the same equivalence class under Alan Turing's original
reducibility notion, called Turing reductions and written < ;. But Turing reductions would collapse
the left-right dimension (which corresponds to d versus Y in logic) down to a single stick, as at right
below. So | prefer to avoid them at this point.]

\ t \ ’];OTI / ! ’ 2
\ N ALLjp, must / /
\ \ Ji / /
\ \ be somewhere , /
\ \n this intersec- / 17
NA tiap of cones., "
H / /
neither c.e. nor ct:-c.e. NN 1
\ \ / /
\ /
OnlyEps & 1
\ / \ /

B "Degrees of
Unsolvability"
a> 45° (technically
A defined via

<r7) ‘O

means A < ,, B

[We can drop the "TM" subscripts not only when the context is clear but because using Java or any
other high-level programming language would give exactly the same classification of the analogously-
defined languages, €.9. Ajzva, Diavas Kjaoa, OnlyEpsia,,, etc. But now we will see machines between
Turing machines and DFAs for which the classifications do change and the distinction between
"decidable" and "undecidable" is almost on a knife-edge.]

