CSE491/596 Categories and Diction, then Examples of Reductions

Elements/Objects

1. string = list<char>

2. Language = set<string>

3. Class = set<Language>

4. Machine

5. Decision Problem ≡ Language

Attributes/predicates/verbs

(a) "Halts" - 4 a2 "run forever" - 4, not any inst. of 2

(b) "Decidable" - 3 and 5

(c) "accepts" - 4

(d) "be accepted by ..." 1 meaning $x \in L(M)$, 2 as L(M)

meaning "the language [of strings] accepted by a machine"

(e) is c.e. --- machine? class? The person saying "machine" probably meant to allow for the point that a given machine might not halt for all inputs. The person saying "class" either meant that RE is a class of languages, or means that any class of Turing machine languages like P or NP must be a subset of RE. Grammatically, as a matter of diction, only a *language* can have the attribute of being c.e. A decision problem---?---the preferred term then is *partially decidable* (*on the 'yes' side*).

(f) "ends in a '0' " --- ? Strictly it's only string. But maybe you have in mind the language $E_0 = \{x : x \text{ ends in a } 0\}$. Or the regular expression $(0+1)^*0$.

Some Common Fallacies:

- 1. Subsets: "Any subset of a decidable language is decidable." Exposing it: Σ^* is a decidable language, in fact a regular language, but the mega-undecidable language ALL_{TM} is a subset of Σ^*
- 2. "If L is undecidable then L is c.e."
- 3. Intension vs. Extension: "Isn't ALL_{TM} the same as Σ^* ?" ALL_{TM} is the language of codes $\langle M \rangle$ of machines M such that $L(M) = \Sigma^*$.

As languages, ALL_{TM} and E_{TM} are disjoint, i.e., $ALL_{TM} \cap E_{TM} = \emptyset$ which is saying that the condition on the set $\{\langle M \rangle \colon L(M) = \Sigma^* \ and \ L(M) = \emptyset\}$ is incompatible.

[The recitation went into a long discussion of the fact of the ALL_{TM} language not literally "being" Σ^* and why it is a proper subset of Σ^* ---because it includes strings like $\langle M_1 \rangle$ for the machine M_1 below but not $\langle M_0 \rangle$ for the machine M_0 whose language is \varnothing .

[The last prepared example of the recitation was about how reductions can be "plus and play" when you vary particulars of what is done before or after a simulation. The idea is to trace out the logical

analysis that results. It involved the following problem, which was given for homework in a recent year. I originally defined it without the primes, i.e. just saying M everywhere, but explained how that can lead to confusion between the source M in the reduction and the "target property."]

OnlyEps

INST: A Turing machine M''.

QUES: Is $L(M'') = \{\epsilon\}$? That is, does M'' accept ϵ but no other string?

Here are diagrams of reductions showing $A_{TM} \leq_m OnlyEps$ and then $D_{TM} \leq_m OnlyEps$.

 $M ext{ accepts } w \implies L(M') = \{\epsilon\} ext{ Thus } \langle M, w \rangle \in A_{TM} \implies \langle M' \rangle \in OnlyEps \ \langle M, w \rangle \notin A_{TM} \implies L(M') = \varnothing \implies \langle M' \rangle \notin OnlyEps.$

 $M ext{ accepts } \langle M \rangle \implies L(M'') = \Sigma^* ext{ Thus: } \langle M \rangle \notin D_{TM} \implies \langle M'' \rangle \notin OnlyEps$ $M ext{ does not accept } \langle M \rangle \implies L(M'') = \{\epsilon\} ext{ Thus: } \langle M \rangle \in D_{TM} \implies \langle M'' \rangle \in OnlyEps$

Other variations on the theme can put the test for $x = \epsilon$ after rather than before:

$$M ext{ accepts } w \Longrightarrow L(M') = \{\epsilon\} \Longrightarrow M' \in OnlyEps$$

 $\langle M, w \rangle \notin A_{TM} \Longrightarrow L(M') = \varnothing \Longrightarrow M' \notin OnlyEps.$

 $M \in K_{TM} \implies L(M'') = \{ \text{all palindromes of length greater the # of steps } M \text{ took to accept } \langle M \rangle \} \implies L(M'') \text{ is nonregular.}$

 $M \notin K_{TM} \implies L(M'') = \emptyset \implies L(M'')$ is regular. Thus $K_{TM} \leq_m \sim I_{REG}$, i.e. $D_{TM} \leq_m I_{REG}$ Thus I_{REG} is not c.e.

For self-study, do the correctness logic on these reductions. Also make the second one work with the "delay switch" idea. It turns out that the OnlyEps language is in the least \equiv_m equivalence class of languages that reduce from both K and D. In particular, it is lower than ALL_{TM} and TOT. [Technically, OnlyEps and K and D are all in the same equivalence class under Alan Turing's original reducibility notion, called **Turing reductions** and written \leq_T . But Turing reductions would collapse the left-right dimension (which corresponds to \exists versus \forall in logic) down to a single stick, as at right below. So I prefer to avoid them at this point.]

[We can drop the "TM" subscripts not only when the context is clear but because using Java or any other high-level programming language would give exactly the same classification of the analogously-defined languages, e.g. A_{Java} , D_{Java} , K_{Java} , $OnlyEps_{Java}$, etc. But now we will see machines between Turing machines and DFAs for which the classifications do change and the distinction between "decidable" and "undecidable" is almost on a knife-edge.]

HW5(1) answer:

Reversal

INST: A Turing machine M''.

QUES: Is $L(M^{\prime\prime})=L(M^{\prime\prime})^R$? Note: $\varnothing^R=\left\{x^R\colon x\in\varnothing\right\}=\varnothing$

Here are diagrams of reductions showing $A_{TM} \leq_m OnlyEps$ and then $D_{TM} \leq_m OnlyEps$.

 $M ext{ accepts } w \implies L(M') = \{01\} ext{ Thus } \langle M, w \rangle \in A_{TM} \implies \langle M' \rangle \notin Reversal \ \langle M, w \rangle \notin A_{TM} \implies L(M') = \varnothing \implies \langle M' \rangle \in Reversal.$

 $M ext{ accepts } \langle M \rangle \implies L(M'') = \Sigma^* \quad \text{Thus: } \langle M \rangle \notin D_{TM} \implies \langle M'' \rangle \in Reversal$ $M ext{ does not accept } \langle M \rangle \implies L(M'') = \{01\} \quad \text{Thus: } \langle M \rangle \in D_{TM} \implies \langle M'' \rangle \notin Reversal$

Other variations on the theme can put the test for x = 01 after rather than before:

 $M ext{ accepts } w \Longrightarrow L(M') = \{\epsilon\} \Longrightarrow M' \in OnlyEps \ \langle M, w \rangle \notin A_{TM} \Longrightarrow L(M') = \varnothing \Longrightarrow M' \notin OnlyEps.$

 $M \in K_{TM} \implies L(M'') = \{ \text{all palindromes of length greater the # of steps } M \text{ took to accept } \langle M \rangle \} \implies L(M'') \text{ is nonregular.}$

 $M \notin K_{TM} \implies L(M'') = \emptyset \implies L(M'')$ is regular. Thus $K_{TM} \leq_m \sim I_{REG}$, i.e. $D_{TM} \leq_m I_{REG}$ Thus I_{REG} is not c.e.

Tue 11/29/2022 Review Session

HW5: Alternate way to pad a short clause like $(u \lor w)$: $(u \lor w \lor z) \land (u \lor w \lor \overline{z}) \cdot (w_0)$ becomes $(w_0 \lor z \lor z') \land (w_0 \lor \overline{z} \lor z') \land ...$

$$\phi = (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee \overline{x}_4)$$
, one of them is to set x_1 true and x_3 false; then x_2 and x_4 become "don't-cares":

In Cook-Levin, the only 3-clauses are ones of the form $(\overline{u} \lor \overline{v} \lor \overline{w})$ and those have the property that they cannot be satisfied 3x, because of the other clauses $(u \lor w \lor z)$ and $(v \lor w \lor z)$.

Edge-Disjoint Paths

The reduction makes $f(\phi) = (G_{\phi}, s_1, s_2, t_1, t_2)$

Here is the whole thing for the formula used before:

$$\phi \ = \ (x_{11} \ \lor \ \overline{x}_{21} \ \lor \ x_{31}) \ \land \ (x_{12} \ \lor \ x_{22} \ \lor \ \overline{x}_{32}) \ \land \ (\overline{x}_{13} \ \lor \ \overline{x}_{33} \ \lor \ \overline{x}_{43})$$

 $\phi = (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee \overline{x}_4)$

Reduction from $A_{T\!M},$ whose instance type is "An M and a w ":

Reduction from ALL_{TM} , whose instance type is "Just a machine M":

Example of designing a reduction by puttingf the correctness logic first (HW3, problem 3): $(M, w) \in A_{TM} \equiv M \ accepts \ w \implies M'(x) \ visits \ all \ of \ \mathbf{its} \ states \ (i. e., \ the \ states \ of \ M'), \ for \ some \ x$ $(M, w) \notin A_{TM} \equiv M \ does \ not \ accept \ w \implies [for \ all \ x] \ M'(x) \ does \ \mathbf{not} \ visit \ all \ of \ its \ states.$

