## CSE491/596 Categories and Diction, then Examples of Reductions

Elements/Objects

1. string = list<char>
2. Language $=$ set<string>
3. Class = set<Language>
4. Machine
5. Decision Problem $\equiv$ Language

Attributes/predicates/verbs
(a) "Halts" - $4 \quad$ a2 "run forever" - 4, not any inst. of 2
(b) "Decidable" - 3 and 5
(c) "accepts" - 4
(d) "be accepted by ..." 1 meaning $x \in L(M), 2$ as $L(M)$
meaning "the language [of strings] accepted by a machine"
(e) is c.e. --- machine? class? The person saying "machine" probably meant to allow for the point that a given machine might not halt for all inputs. The person saying "class" either meant that RE is a class of languages, or means that any class of Turing machine languages like $P$ or NP must be a subset of RE. Grammatically, as a matter of diction, only a language can have the attribute of being c.e. A decision problem---?---the preferred term then is partially decidable (on the 'yes' side).
(f) "ends in a '0' " --- ? Strictly it's only string. But maybe you have in mind the language $E_{0}=\{x: x$ ends in a 0$\}$. Or the regular expression $(0+1)^{*} 0$.

Some Common Fallacies:

1. Subsets: "Any subset of a decidable language is decidable." Exposing it: $\Sigma^{*}$ is a decidable language, in fact a regular language, but the mega-undecidable language $A L L_{T M}$ is a subset of $\Sigma^{*}$
2. "If $L$ is undecidable then $L$ is c.e."
3. Intension vs. Extension: "Isn't $A L L_{T M}$ the same as $\Sigma^{*}$ ?"
$A L L_{T M}$ is the language of codes $\langle M\rangle$ of machines $M$ such that $L(M)=\Sigma^{*}$.

As languages, $A L L_{T M}$ and $E_{T M}$ are disjoint, i.e., $A L L_{T M} \cap E_{T M}=\varnothing$ which is saying that the condition on the set $\left\{\langle M\rangle: L(M)=\Sigma^{*}\right.$ and $\left.L(M)=\varnothing\right\}$ is incompatible.
[The recitation went into a long discussion of the fact of the $A L L_{T M}$ language not literally "being" $\Sigma^{*}$ and why it is a proper subset of $\Sigma^{*}$---because it includes strings like $\left\langle M_{1}\right\rangle$ for the machine $M_{1}$ below but not $\left\langle M_{0}\right\rangle$ for the machine $M_{0}$ whose language is $\varnothing$.

[The last prepared example of the recitation was about how reductions can be "plus and play" when you vary particulars of what is done before or after a simulation. The idea is to trace out the logical
analysis that results. It involved the following problem, which was given for homework in a recent year. I originally defined it without the primes, i.e. just saying $M$ everywhere, but explained how that can lead to confusion between the source $M$ in the reduction and the "target property."]

## OnlyEps

INST: A Turing machine $M^{\prime \prime}$.
QUES: Is $L\left(M^{\prime \prime}\right)=\{\epsilon\}$ ? That is, does $M^{\prime \prime}$ accept $\epsilon$ but no other string?
Here are diagrams of reductions showing $A_{T M} \leq{ }_{m}$ OnlyEps and then $D_{T M} \leq{ }_{m}$ OnlyEps .


if $M$ arronte $f$
$M$ accepts $w \Longrightarrow L\left(M^{\prime}\right)=\{\epsilon\} \quad$ Thus $\langle M, w\rangle \in A_{T M} \Longrightarrow\left\langle M^{\prime}\right\rangle \in$ OnlyEps
$\langle M, w\rangle \notin A_{T M} \Longrightarrow L\left(M^{\prime}\right)=\varnothing \Longrightarrow\left\langle M^{\prime}\right\rangle \notin$ OnlyEps.
$M$ accepts $\langle M\rangle \Longrightarrow L\left(M^{\prime \prime}\right)=\Sigma^{*}$ Thus: $\langle M\rangle \notin D_{T M} \Longrightarrow\left\langle M^{\prime \prime}\right\rangle \notin$ OnlyEps
$M$ does not accept $\langle M\rangle \Longrightarrow L\left(M^{\prime \prime}\right)=\{\epsilon\} \quad$ Thus: $\langle M\rangle \in D_{T M} \Longrightarrow\left\langle M^{\prime \prime}\right\rangle \in$ OnlyEps

Other variations on the theme can put the test for $x=\epsilon$ after rather than before:

$M$ accepts $w \Longrightarrow L\left(M^{\prime}\right)=\{\epsilon\} \Longrightarrow M^{\prime} \in$ OnlyEps
$\langle M, w\rangle \notin A_{T M} \Longrightarrow L\left(M^{\prime}\right)=\varnothing \Longrightarrow M^{\prime} \notin$ OnlyEps .
$M \in K_{T M} \Longrightarrow L\left(M^{\prime \prime}\right)=\{$ all palindromes of length greater the $\#$ of steps $M$ took to accept $\langle M\rangle\}$ $\Longrightarrow L\left(M^{\prime \prime}\right)$ is nonregular.
$M \notin K_{T M} \Longrightarrow L\left(M^{\prime \prime}\right)=\varnothing \Longrightarrow L\left(M^{\prime \prime}\right)$ is regular. Thus $K_{T M} \leq_{m} \sim I_{R E G}$, i.e. $D_{T M} \leq_{m} I_{R E G}$ Thus $I_{\text {REG }}$ is not c.e.

For self-study, do the correctness logic on these reductions. Also make the second one work with the "delay switch" idea. It turns out that the OnlyEps language is in the least $\equiv m$ equivalence class of languages that reduce from both $K$ and $D$. In particular, it is lower than $A L L_{T M}$ and $T O T$. [Technically, OnlyEps and $K$ and $D$ are all in the same equivalence class under Alan Turing's original reducibility notion, called Turing reductions and written $\leq_{T}$. But Turing reductions would collapse the left-right dimension (which corresponds to $\exists$ versus $\forall$ in logic) down to a single stick, as at right below. So I prefer to avoid them at this point.]

[We can drop the "TM" subscripts not only when the context is clear but because using Java or any other high-level programming language would give exactly the same classification of the analogouslydefined languages, e.g. $A_{\text {Java }}, D_{\text {Java }}, K_{\text {Java }}$, OnlyEps ${ }_{\text {Java }}$, etc. But now we will see machines between Turing machines and DFAs for which the classifications do change and the distinction between "decidable" and "undecidable" is almost on a knife-edge.]

HW5(1) answer:

## Reversal

INST: A Turing machine $M^{\prime \prime}$.
QUES: Is $L\left(M^{\prime \prime}\right)=L\left(M^{\prime \prime}\right)^{R}$ ? Note: $\varnothing^{R}=\left\{x^{R}: x \in \varnothing\right\}=\varnothing$

Here are diagrams of reductions showing $A_{T M} \leq{ }_{m}$ OnlyEps and then $D_{T M} \leq{ }_{m}$ OnlyEps .

if $M$ arronte $f$
$M$ accepts $w \Longrightarrow L\left(M^{\prime}\right)=\{01\}$ Thus $\langle M, w\rangle \in A_{T M} \Longrightarrow\left\langle M^{\prime}\right\rangle \notin$ Reversal $\langle M, w\rangle \notin A_{T M} \Longrightarrow L\left(M^{\prime}\right)=\varnothing \Longrightarrow\left\langle M^{\prime}\right\rangle \in$ Reversal.
$M$ accepts $\langle M\rangle \Longrightarrow L\left(M^{\prime \prime}\right)=\Sigma^{*}$ Thus: $\langle M\rangle \notin D_{T M} \Longrightarrow\left\langle M^{\prime \prime}\right\rangle \in$ Reversal $M$ does not accept $\langle M\rangle \Longrightarrow L\left(M^{\prime \prime}\right)=\{01\}$ Thus: $\langle M\rangle \in D_{T M} \Longrightarrow\left\langle M^{\prime \prime}\right\rangle \notin$ Reversal

Other variations on the theme can put the test for $x=01$ after rather than before:

$M$ accepts $w \Longrightarrow L\left(M^{\prime}\right)=\{\epsilon\} \Longrightarrow M^{\prime} \in$ OnlyEps
$\langle M, w\rangle \notin A_{T M} \Longrightarrow L\left(M^{\prime}\right)=\varnothing \Longrightarrow M^{\prime} \notin$ OnlyEps.
$M \in K_{T M} \Longrightarrow L\left(M^{\prime \prime}\right)=\{$ all palindromes of length greater the $\#$ of steps $M$ took to accept $\langle M\rangle\}$ $\Longrightarrow L\left(M^{\prime \prime}\right)$ is nonregular.
$M \notin K_{T M} \Longrightarrow L\left(M^{\prime \prime}\right)=\varnothing \Longrightarrow L\left(M^{\prime \prime}\right)$ is regular. Thus $K_{T M} \leq{ }_{m} \sim I_{R E G}$, i.e. $D_{T M} \leq{ }_{m} I_{R E G}$ Thus $I_{\text {REG }}$ is not c.e.

Tue 11/29/2022 Review Session

HW5: Alternate way to pad a short clause like $(u \vee w)$ :
$(u \vee w \vee z) \wedge(u \vee w \vee \bar{z}) .\left(w_{0}\right)$ becomes $\left(w_{0} \vee z \vee z^{\prime}\right) \wedge\left(w_{0} \vee \bar{z} \vee z^{\prime}\right) \wedge \ldots$

$\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)$,
one of them is to set $x_{1}$ true and $x_{3}$ false; then $x_{2}$ and $x_{4}$ become "don't-cares":

In Cook-Levin, the only 3-clauses are ones of the form $(\bar{u} \vee \bar{v} \vee \bar{w})$ and those have the property that they cannot be satisfied 3 x , because of the other clauses $(u \vee w \vee z)$ and $(v \vee w \vee z)$.


Edge-Disjoint Paths
The reduction makes $f(\phi)=\left(G_{\phi}, s_{1}, s_{2}, t_{1}, t_{2}\right)$


Here is the whole thing for the formula used before:

$$
\phi=\left(x_{11} \vee \bar{x}_{21} \vee x_{31}\right) \wedge\left(x_{12} \vee x_{22} \vee \bar{x}_{32}\right) \wedge\left(\bar{x}_{13} \vee \bar{x}_{33} \vee \bar{x}_{43}\right)
$$



Reduction from $A_{T M}$, whose instance type is "An $M$ and a $w$ ":


Reduction from $A L L_{T M}$, whose instance type is "Just a machine $M$ ":


Example of designing a reduction by puttingf the correctness logic first (HW3, problem 3):
$(M, w) \in A_{T M} \equiv M$ accepts $w \Longrightarrow M^{\prime}(x)$ visits all of its states (i.e., the states of $M^{\prime}$ ), for some $x$ $(M, w) \notin A_{T M} \equiv M$ does not accept $w \Longrightarrow[$ for all $x] M^{\prime}(x)$ does not visit all of its states.


