CSE491/596 Extra Notes From Chapters 5--6

These are things that were mentioned in briefer form to make the Week 13 lectures flow around Prelim
[I. This begins with a sizable example of the Hadamard Transform---here illustrated on 4 qubits:

[H 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
0010 1 1 ===l 1 1 === 1 1 —l=t=t=il: 1 1 =l=t==1
0011 1 NN ES] 1 1 =, 1 Y] 1 SR 1 1 -1 1 -1
0100 1 1 1 1 = 1 1 1 1 AN RS Y|
0101 1 -1 1 R 1 -1 1 1 -1 1 =177 1 -1 1
0110 1 1 il 1 1 1 1 e e 1 1
0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1000 1 1 1 1 1 1 1 1 e O O 3 O O
1001 1 -1 1 -1 1 -1 1 1151 1 -1 1 -1 1 -1 1
1010 1 1 = T=t=iil 1 1 =]t Tttt 1 1 l==t=1 1 1
1011 1 -1 -1 1 1 -1 1 =l =1 1 1 = | 1 1 -1
1100 1 1 1 1 EEE I EEEEEE I RN R 1 1 1 1
1101 1 -1 1 =11 1 -1 1 -1 1 -1 1 1 -1 1 -1
1110 1 1 e N ! 1 1| =111 1 1 1 1 =111 =1
L1111 1 -1 -1 1 -1 1 1 =11 1=1 1 1 -1 1 =101 =i 1

Hu,0] = (-1)"

We have argued that the Hadamard transform is feasible: it is just a column of n Hadamard gates, one
on each qubit line. There is, however, one consequence that can be questioned. We observed that a
network of Toffoli gates suffices to simulate any Boolean circuit C (of NAND gates etc.) that computes a

function f : {0, 1}" — {0, 1}". The Toffoli network C ¢ actually computes the reversible form

F(x1, ..., xp,a1, ..., a,) = (X1, .., X, 81 ® f(X)1, ..., a0, ® f(X),).
The matrix Uy of Cf is a giant permutation martrix in the 2"*" underlying coordinates. Yet if the
Boolean circuit C has s gates, then we reckon that Cf costs O(s) to build and operate. Now build the
following circuit, which is illustrated with n = 5 and r = 4:

0>
0>
0>
07
0>
07
0>
07
0>

(=]] o] [rm] [

What this circuit piece computes is the functional superposition of f defined as

1
PIRENT N
\/? x€{0,1}"

The juxtaposition of two kets really is a tensor product. This sum has exponentially many terms. It
seems to preserve an exponential amount of information: the entire truth table of the Boolean function

@5y =

f(x) over all arguments x € {0, 1}". However:

« f is not an arbitrary or "random" function: it is computed by a small circuit of s NAND gates.

* We cannot actually extract an exponential amount of information from |CDf>. If we measure it
using the standard basis, we get our argument x back again plus r bits of some sampled
function value. Measuring it in a different basis does not increase the information yield (this is
part of Holevo's Theorem).

Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the
creation of |(Pf>. We will "table" this question and consider the effort to be just O(n) for the Hadamard
transform plus O(s) for the circuit.

Note About Functional Superpositions (cf. sections 6.2 and 6.4)

We've seen (on homework) that when f is the Boolean identity function on n = 1 bit, then Cf consists
of just one CNOT gate. This generalizes for n > 1 using one CNOT gate per argument. Thus

00— H—@

(O] ?

|0)—1H] f
|0)—H] ?
|0)——H] r
0) -+

0) D

0 B

10 15

10 D

computes the functional superposition

\/—, EO] ENE

This is not the same as |+++++) ® | +++++), because that is the equal superposition over all basis
states for 10-bit binary strings, including all the cases of | xy> where the binary strings x and y of length
5 are different. An analogy is that for any set A of two or more elements, the Cartesian product of A
with itself includes ordered pairs (x, y) with x, y € A but x # y, whereas the functional superposition is
like the diagonal of the Cartesian product, namely {(x, x) : x € A}. The functional superposition is
entangled, just as we first saw in the case n = 1.

If we replace the five H gates by a subcircuit that prepares a general 5-qubit state
|(j)> = 1q,/00000) + a4]00001) + --- +a39|11110) + a3;|11111),

then the five CNOT gates produce
D(Iqb)) = a,/0000000000) + a;/0000100001) + --- +a37/1111011110) + a5;|1111111111).

This is not the same as |¢) ® |¢), whose terms have coefficients a,4; for all i and j. IMHO the
notation | |¢) or |p¢) can be unclear about what is meant, though I've freely used |++) etc. as
above. When |x) is a basis element in the basis used for notation, then there is no difference: both

|x) ®|x) and D(|x)) have the single term |xx) with coefficient 1 = 12.

The Copy-Uncompute Trick (section 6.3)

Now suppose we have any quantum operation U on the “x™ part, where f(x)
might be embedded as a substring in m indexed places. We can automatically
obtain the corresponding F(x) via the computation

(U" @ Im)C(U @ Im)(ex @ egn),

where the Gy is applied to those index places and to m ancilla places. This
effectively lifts out and copies f(x) into the fresh places. The final U* then
inverts what U did in the first n places, “cleaning up” and leaving x again.
Here is a diagram for n=4 and m=2 where the values f(x)=y;y,€1{0,1 }2
are computed on the second and third wires and then copied to the ancillae:

X1 — — X
Xy —| }:1 . —xn
X3 — u 2 2 u — X3
Xy — X1
0 v Vi
0 & ¥y2

This trick is called copy-uncompute or compute-uncompute. It is important
to note that it works only when the quantum state after applying U and before
Cm is a superposition of only those basis states that have f(x) in the set of quan-
tum coordinates to which the controls are applied. If there is any disagreement
there in the superposition, then the results can be different.

On input egg, that is, x; =x, =0, the first Hadamard gate gives the control qubit
a value that is a superposition. Hence, the second Hadamard gate does not
“uncompute” the first Hadamard to restore z; =0. The action can be worked
out by the following matrix multiplication (with an initial factor of %):

o 1oyt 0 0 ot 0 10 I 11 -1
0O 1 0 10 1 0 Off0O 1 O 1| (1 1-11
I 0O-1o0opj0 0 0 111 0-10 I -1 1 1
O 1 0-1]0 O 1 Of (01 0-1 -1 1 11

This maps eqgg to %I 1,1, 1,-1], thus giving equal probability to getting O or 1 on
the first qubit line.

Feasible Diagonal Matrices (sections 5.4 and 6.5)

100 O
, : 1 0 010 O
W tinue th = ,CZ = ,b
e can continue the progression Z. [0 _1] C 001 0 y
] 000 -1
1
1
1
CCZ = 1 : ,CCCZ = diag([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1)),
1
1
1

and so forth. These are examples of a different kind of conversion of a Boolean function f besides the
reversible form called F or C above. This is the matrix G defined for all indices u, v by

0 fu+vo
Gelu,v] = -1 ifu=0v Aflu)y=1.
1 fu=0v Af(u)=0

The above are Gayp for the 1-ary AND function. The G stands for "Grover Oracle", though here |
would rather emphasize that it is a concretely feasible operation.

Theorem (6.2): Iff is computable by a Boolean circuit with s gates, thgen Gf can be computed by a
quantum circuit of O(s) gates.

When s = s(n) is polynomial in 11, this makes a big contrast to G being a 2"-sized diagonal matrix.

The Phase Flip Trick (also section 6.5)

With reference to the idea of a = (—1)/®):

This becomes a great trick if we can arrange for a itself to depend on the
basis elements e,. Given a Boolean function f with one output bit, let us return
to the computation of the reversible function F(x, y)= (x, (y & f(x))). Our quan-
tum circuits for f have thus far initialized y to 0. Let us instead arrange y=1
and then apply a single-qubit Hadamard gate. Thus, instead of starting up with
e, ey, we have e, @ d. where d is the “difference state™

d= (\/1,_ :/l_) \/],Eie’o e1).

Now apply the circuit CDmplltll’]U F. By linearity we get

Fix.d)= (F(r{)) F(x1))

(€x @ eoprm) —€x @ €170

Tm\—“fml-’\ll

€@ wt}ﬁﬂ,f{x} —€ @f{x}))

2d,

I
'54

where

e Jsleo—er) iffx)=0
J5le1—eo) iffx)=1

1Y¥a.

Thus, we have flipped the last quantum coordinate by the value a,=(-1)/%,
Well, actually no—by the above reasoning, what we have equally well done
is that, when presented with a basis vector e, as input, we have multiplied it
by the x-dependent value a,. We have involved the last coordinate (n+ 1), but
because we have obtained a,e, @ d, we can regard it as unchanged. In fact,
we can finish with another Hadamard and NOT gate on the last coordinate to
restore it to 0. On the first n qubits, over their basis vectors e,, what we have
obtained is the action
e, — (-1Y%e,.

This is the action of the Grover oracle. We have thus proved theorem 3.3 in
chapter 5. We can summarize this and the conclusion of section 6.4 in one
theorem statement, as follows.

THEOREM 6.2 For all (families of) functions f: {0,1}"— {0,1}™ that are
classically feasible, the mapping from e o~ to the functional superposition s¢
and the Grover oracle of f are feasible quantum operations. l

The Deferred Measurement Principle (section 6.6)

In a picture:

THEOREM 6.3 If the result b of a one-place measurement is used only as
the test in one or more operations of the form “if b then U,” then exactly the
same outputs are obtained upon replacing U by the quantum controlled oper-
ation CU with control index the same as the index place being measured and
measuring that place later without using the output for control.

Proof. Suppose in the new circuit the result of the measurement is (). Then the
CU acted as the identity, so on the control index, the same measurement in the
old circuit would yield 0, thus failing the test to apply U and so yielding the
identity action on the remainder as well. If the new circuit measures 1. then
because CU does not affect the index, the old circuit measured 1 as well, and
in both cases the action of U is applied on the remainder. [

In a picture:

