
CSE491/596, Fall 2023:  Demo of the "Turing Kit" and NFAs
 
[Most of this lecture will be a demo of the "Turing Kit" software on the course webpage.  This will not be 
required for any assignment, just optional.  The demo will include a look-ahead to Turing machines.  
 

• If the demo glitches, we will try again Friday and give the Friday Week 1 lecture now.
• If time allows, NFAs will be introduced now; else they come in next Wednesday's lecture.

 
The first assignment will be given out in Week 2.]
 
 
One usefulness of the "set of triples" definition of a DFA is that it extends naturally to define a 
nondeterministic finite automaton (NFA).  We can recap it in a general way:
 
The formal definition of a finite automaton is a 5-tuple (i.e., an object)  where:N =  Q, 𝛴, 𝛿, s, F( )

•  is a finite set of states                                                                           set<State> Q;Q

•  is the input alphabet                                                                              set<char> Sigma;𝛴

• , a member of , is the start state (also called )                                  State s;s Q q0

• , a subset of , is the set of accepting states (also called final states)  set<State> F;F Q

•  is a finite set of instructions (also called transitions) of the form  where  and 𝛿 p, c, q( ) p, q ∈  Q

.c ∈  𝛴

   set<Triple<State,char,State> > delta;
The machine is deterministic (a DFA) if .  Else it is ∀p ∈  Q ∀ c ∈( )( 𝛴) ∃!q ∈  Q :  p, c, q  ∈  𝛿( ) ( )

"properly" nondeterministic (an NFA).
 
So DFA is a special case of an NFA.  When we have a DFA , we can regard  as a function from M 𝛿

 to .  With an NFA, we could regard  as a function from  to , which is the set of all Q ×  𝛴 Q 𝛿 Q ×  𝛴 2Q

subsets of  and called the power set of .  But in most cases I prefer to think of  as a set of Q Q 𝛿

instructions.  
 
 
NFAs with -transitions𝜖

 
The NFA can be augmented by allowing it to move from a state  to a state  without changing a p q

character.  The instruction is then written as .  Then we havep, 𝜖, q( )

 
.𝛿  ⊆   Q ×  𝛴 ∪  𝜖  ×  Q( { })

 
This is confusing because  is a string, not a character in .  We will shortly see the point of this 𝜖 𝛴

extension.  The Sipser text, on which Debray's notes are based, makes this the standard definition of 
NFA, while other sources call it an NFA with -transitions (NFA ).  The extension does not affect the 𝜖 𝜖

formal definition of the language of the NFA, which I give in my own terms as follows:

 

 



 
Say that  can process a string  from state  to state  if there is a sequence of instructionsN x p q

,  p, c , q q , c , q q , c , q ⋯ q , c , q q( 1 1)( 1 2 2)( 2 3 3) ( m-2 m-1 m-1)( m-1 c , qm )

such that .  Then we write  (with  understood).  Now formally define:c c ⋯ c  =  x1 2 m x ∈  Lpq N

.L N  =  ∪  L( ) f ∈F sf

 
If  has only one accepting state  (a design goal we can meet for NFAs but often not for DFAs) then N f

the language is just . We will find the  concept especially handy with "GNFAs" later on.Lsf Lpq
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 but  is not acceptingx ∈  Ls,dead dead

so  is not in the language.x

Without the dead state and arc to it, the NFA on input  would "crash" in state   N x =  $DD s.

Even though  is an accepting state (and even though this would count as legal termination bys

a Turing machine), not all of  would be processed, so it does not count in the FA's language. x

With the dead state present,  gets processed to , but  so  still.x dead dead ∉  F x ∉  L N( )
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