
CSE491/596, Fall 2023: Demo of the "Turing Kit" and NFAs

[Most of this lecture will be a demo of the "Turing Kit" software on the course webpage. This will not be
required for any assignment, just optional. The demo will include a look-ahead to Turing machines.

• If the demo glitches, we will try again Friday and give the Friday Week 1 lecture now.
• If time allows, NFAs will be introduced now; else they come in next Wednesday's lecture.

The first assignment will be given out in Week 2.]

One usefulness of the "set of triples" definition of a DFA is that it extends naturally to define a
nondeterministic finite automaton (NFA). We can recap it in a general way:

The formal definition of a finite automaton is a 5-tuple (i.e., an object) where:N = Q, 𝛴, 𝛿, s, F()

• is a finite set of states set<State> Q;Q

• is the input alphabet set<char> Sigma;𝛴

• , a member of , is the start state (also called) State s;s Q q0

• , a subset of , is the set of accepting states (also called final states) set<State> F;F Q

• is a finite set of instructions (also called transitions) of the form where and 𝛿 p, c, q() p, q ∈ Q

.c ∈ 𝛴

 set<Triple<State,char,State> > delta;
The machine is deterministic (a DFA) if . Else it is ∀p ∈ Q ∀ c ∈()(𝛴) ∃!q ∈ Q : p, c, q ∈ 𝛿() ()

"properly" nondeterministic (an NFA).

So DFA is a special case of an NFA. When we have a DFA , we can regard as a function from M 𝛿

 to . With an NFA, we could regard as a function from to , which is the set of all Q × 𝛴 Q 𝛿 Q × 𝛴 2Q

subsets of and called the power set of . But in most cases I prefer to think of as a set of Q Q 𝛿

instructions.

NFAs with -transitions𝜖

The NFA can be augmented by allowing it to move from a state to a state without changing a p q

character. The instruction is then written as . Then we havep, 𝜖, q()

.𝛿 ⊆ Q × 𝛴 ∪ 𝜖 × Q({ })

This is confusing because is a string, not a character in . We will shortly see the point of this 𝜖 𝛴

extension. The Sipser text, on which Debray's notes are based, makes this the standard definition of
NFA, while other sources call it an NFA with -transitions (NFA). The extension does not affect the 𝜖 𝜖

formal definition of the language of the NFA, which I give in my own terms as follows:

Say that can process a string from state to state if there is a sequence of instructionsN x p q

, p, c , q q , c , q q , c , q ⋯ q , c , q q(1 1)(1 2 2)(2 3 3) (m-2 m-1 m-1)(m-1 c , qm)

such that . Then we write (with understood). Now formally define:c c ⋯ c = x1 2 m x ∈ Lpq N

.L N = ∪ L() f ∈F sf

If has only one accepting state (a design goal we can meet for NFAs but often not for DFAs) then N f

the language is just . We will find the concept especially handy with "GNFAs" later on.Lsf Lpq

s f

$

$

D

x = $DD

D

dead

 but is not acceptingx ∈ Ls,dead dead

so is not in the language.x

Without the dead state and arc to it, the NFA on input would "crash" in state N x = $DD s.

Even though is an accepting state (and even though this would count as legal termination bys

a Turing machine), not all of would be processed, so it does not count in the FA's language. x

With the dead state present, gets processed to , but so still.x dead dead ∉ F x ∉ L N()

N :

$, D

