CSE491/596, Fall 2023: Demo of the "Turing Kit" and NFAs

[Most of this lecture will be a demo of the "Turing Kit" software on the course webpage. This will not be
required for any assignment, just optional. The demo will include a look-ahead to Turing machines.

+ If the demo glitches, we will try again Friday and give the Friday Week 1 lecture now.
* If time allows, NFAs will be introduced now; else they come in next Wednesday's lecture.

The first assignment will be given out in Week 2.]

One usefulness of the "set of triples" definition of a DFA is that it extends naturally to define a
nondeterministic finite automaton (NFA). We can recap it in a general way:

The formal definition of a finite automaton is a 5-tuple (i.e., an object) N = (Q, X, 6, s, F) where:

+ Qs a finite set of states set<State> Q;
« X is the input alphabet set<char> Sigma;
* s, amember of Q, is the start state (also called g) State s;

« F, asubset of Q, is the set of accepting states (also called final states) set<State> F;
« O is afinite set of instructions (also called transitions) of the form (p, ¢, q) where p,q € Q and
c € L.
set<Triple<State,char, State> > deltsa;
The machine is deterministic (a DFA)if (Vp € Q)(Vc € X)A!g € Q): (p,c,q) € O. Elseitis
"properly" nondeterministic (an NFA).

So DFA is a special case of an NFA. When we have a DFA M, we can regard 6 as a function from
Q X X to Q. With an NFA, we could regard § as a function from Q x X to 22, which is the set of all

subsets of Q and called the power set of Q. But in most cases | prefer to think of 6 as a set of
instructions.

NFAs with e-transitions

The NFA can be augmented by allowing it to move from a state p to a state g without changing a
character. The instruction is then written as (p, €,). Then we have

5 C Qx(ZUIle)xQ.

This is confusing because € is a string, not a character in 2. We will shortly see the point of this
extension. The Sipser text, on which Debray's notes are based, makes this the standard definition of
NFA, while other sources call it an NFA with e-transitions (NFA_). The extension does not affect the
formal definition of the language of the NFA, which | give in my own terms as follows:

Say that N can process a string x from state p to state g if there is a sequence of instructions
(P c1,91)(q1, €2, 92)(G2, €3, 93) -+ (-2, Cm-1, Gin-1)(Gm-1.Cm, q)

such that cicp --- ¢, = x. Then we write x € qu (with N understood). Now formally define:
L(N) = U fer Ly

If N has only one accepting state f (a design goal we can meet for NFAs but often not for DFAs) then
the language is just Lsf. We will find the qu concept especially handy with "GNFAs" later on.

X € Lggesq but dead is not accepting
so x is not in the language.

Without the dead state and arc to it, the NFAN on input x = $DD would "crash" in state s.
Even though s is an accepting state (and even though this would count as legal termination by
a Turing machine), not all of x would be processed, so it does not count in the FA's language.
With the dead state present, x gets processed to dead, butdead ¢ Fsox ¢ L(N) still.

