CSE491/596 Lecture Friday Sept. 4. Regular Expressions

Built up from characters and the empty string (eor A)
via the operations + (also written U or|), -, and *:

this + that: this or that

this - that: this followed by that

(this)* : zero or more occurrences of this. Examples:

(@+b)a+c) = aa + ac + ba + bc (0+01)-(10+0) = 010 + 00 + 0110

(@a+bc) = {€, a, bc, aa, abc, bcbe, bea, aaa, ...} But not bac for instance.
00y = {e, 00, 0000, ...} = {0” D nis even}.
(111 = {1 111, 11111 .. = {1”: nis odd}. 1(11)* is equivalent.

Now how about strings over {0,1} containing an odd number of 1s?

e . ¢ 'l o TR | P ndmls A N
Try even 1s first: (ﬁ*~1{)*—1ﬁ* — < his was not comprehensive, did not match 0, 00

SV P

ey
Then add a 1 to make it odd: (0*10710) 1. Isthatgood? Sound? Comprehensive?

(needs to allow ending in 0s) Note incidentaly that 0°0" = 07—

b
* ”
Economical is: (0*10*1) 010", Fixing the even case, use {0710°1) 0".
*

How about {x € {0,1}" : every 5th char of x is a 1}? We can try (1(0 + 1)4)
But this forces the string to have length a multiple of 5. To allow other lengths, try:

(10+1)%) (e + 1(e+0+1)(e+0+1)(e+0+1)) [Will pause for why it works.]

Now how do we apply these ideas to make a regular expression for Wed.'s
language L(M5,) = {x: x has an odd # of 1s in positions =2 mod 5}?

First, we need at least 3 chars, to get at least one 1 in such a position.
The first two such chars are arbitrary: (0 + 1)?. Then we see the equation:

L(Msp) = (0+1)%-L(Msp)

 Thus we can focus on "blocks" of the form Z = 000+ 1)* orI = 1(0+1)%.
Take our previous "template" for an odd number of 1's and sub. 0 by Z, 1 by I

LMsg) = (2*12*1) Z* 12"

But this has another "overkill" problem: The last 1 in a multiple-of-5 position
need not be followed by 4 chars. So instead define Y = (0+ 1)*0. Then:

L(Msy) = (0+1)2-(Z*1Z*) Z*1Y*(e + 0 + 1)4.

= (0+1)2. ((0(0 +1)4)" 100 + 1)4(0(0 + 1)4) 1(0 + 1)4)*(0(0 +1)4)1((0 +1)%0) (e + 0 + 1)4.

Yuck---7--- But we got it by top-down reasoning.

New Lecture Idea: Talk in terms of "Trominoes" (like dominoes but with middle panel):

[p,c gl where p and g are numbers and ¢ is a char
or:[p, €, 4] using the empty string. (Not allowed to rotate them 180°)

A sequence of trominoes is "legal" provided they "match like dominoes":

[CIo,C1,CI1][Q1,C2,Q2][Q2,C3/6]3] [L]n—zlCn—1,51n.—1][%-1,0m6/;1]

Its yield is the string x = cicyc3 -+ ¢, . If some c; are really € then |x| < n.

Definition: A nondeterministic finite automaton (NFA) N is a set of trominoes, in
which one numbers = ¢ is "start" and certain numbers are "final". The language
L(N) is the set of yields of legal sequences that begin with s and end with a final #.

N is deterministic (a DFA) if every p, c pair (c a char, no €) has one tromino [p, c, g].
\ A

@ﬁﬁ@

