CSE491/596 Lecture Wed. 6 Sept.: Regular Expressions and FAs

Built up from characters and the empty string (eorA)
via the operations + (also written U or|), -, and ™:
this + that: this or that

this - that: this followed by that
(this)* : zero or more occurrences of this. Examples:

(@a+b)-(a+c) = aa + ac + ba + bc (0+01)-(10+0) = 010 + 00 + 0110
(a+bc)” = {e, a, bc, aa, abc, bebe, bea, aaa, ...} But not bac for instance.

(00)° = fe, 00, 0000, ..} = {0" : nis cven}.
11 = {1, 111, 11111, ... = {1”: nis odd}. 1(11)* is equivalent.

Now how about strings over {0,1} containing an odd number of 1s?
Try even 1s first: (0*10*10*)*, Fixing the even case, use (0*10*1)*0*.

Then add a 1 to make it odd: (0*10*10*)*1. Is that good? Sound? Comprehensive?

(needs to allow ending in 0s) Note incidentaly that 070" = 0~.

Economical is: (0*10*1)*0*10*_ This was not comprehensive, did not match 0,
How about {x € {0,1}" : every 5th char of x from the first is a 1}? We can try

(100 + 1)%)".

But this forces the string to have length a multiple of 5. To allow otherlengths—try:—

(10+1)*) (e + 1(e+0+1)(e+0+1)(e+0+1)) [Will pause for why it works.]



Now how do we apply these ideas to make a regular expression for Wed.'s
language L(Ms,) = {x: x has an odd # of 1s in positions = 2mod 5}?

First, we need at least 3 chars, to get at least one 1 in such a position.
The first two such chars are arbitrary: (0 + 1)2. Then we see the equation:

L(Msp) = (0+ 1)2‘L(M5,0)

Thus we can focus on "blocks" of the form Z = 00+ 1)*orI = 1(0 + 1)%.
Take our previous "template" for an odd number of 1's and sub. 0 by Z, 1 by I

L(Mso) = (z*121) Z*1Z*

But this has another "overkill" problem: The last 1 in a multiple-of-5 position
need not be followed by 4 chars. So instead define Y = (0 + 1)40. Then:

LMsz) = O+ 12 (ZIZ 1 ZT¥ (e 40+ 1)

= (0+1)2- ((0(0 +1)4 10+ 1D*(0(0+ 1)) 1(0 + 1)4)* (000+1)*) 1((0+1)*0) (e + 0+ 1%

Yuck---7---I We got it by top-down reasoning---but maybe there's a better way...

Here is the DFA M5y that was referred to, from the first-day lecture in 2021 :



https://cse.buffalo.edu/~regan/cse491596/CSE491596lect083120.pdf

If we start this machine up in state g3 then we get M5 »: the machine either gets just zero or one char
and accepts, or it gets two chars corresponding to the initial (0 + 1) and then goes into the same
machinations as M5 .






