
CSE491/596 Lecture Wed. Sep. 9.                             Kleene Star and NFA-to-DFA.
 
L 𝛾  =  A ⋅  B =  xy :  x ∈ A ∧  y ∈  B .( ) { }

 
Given  (meaning:  is a language), define  as shorthand for .  A ⊆  𝛴* A A2 A ⋅A

Does ?  Where  for any string .  E.g. if  thenA  =  x :  x ∈  A2 2 x  =  x ⋅ x2 x A =  0, 01, 10{ }

.  But x :  x ∈  A  =  00, 0101, 10102 { } A  =  00, 001, 010, 0101, 0110, 100, 1001, 1010 .2 { }

I.e., , allowing  different from .  Note also  not .A  =  A ⋅A =  x ⋅ y :  x, y ∈  A2 { } y x |A | =  82 9

 
Also  abbreviates , , etc.  Also  just equals .  But what about ?A3 A ⋅A ⋅A A  =  A ⋅A4 3 A1 A A0

We want languages to obey the same law of powers that numbers do: .  The special case  a ⋅ a  =  ai j i+j i =  0

needs  for all , so  must equal .  Well, the analogue of  for languages is , which gives a  ⋅ a  =  a =  a0 j 0+j j j a0 1 1 𝜖{ }

 for all languages .  So we want . 𝜖 ⋅B =  B ⋅ 𝜖 = B{ } { } B A  =  𝜖0 { }

The tricky thing is that this goes even for : , not !  Why should this be?A =  ∅ ∅  =  𝜖0 { } ∅

I wrote one story about it at https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-emptiness/
In abstract math,  denotes the set of functions , and by rule,  which is just a power of BA f :  A  B→ |B | =  |B|A |A|

numbers.  So  equals the cardinality of the set of functions from  to .  Now:00
∅ ∅

 
The empty function  is a function from  to .∅ ∅ ∅

 
And it is the only function from  to  This is "Zen" but real.  So .  Since  is like , this can be argued ∅ ∅. 0  =  10 𝜖{ } 1

to justify .  But I will try a third way to make it intuitive.  First, let's finally get around to defining the ∅  =  𝜖0 { }

(Kleene) star operation, named for Stephen Kleene (1909--1994):
 

A  =   A  =  𝜖  ∪A ∪A  ∪  A  ∪ ⋯  * ⋃
 

i=0

∞
i { } 2 3

 
It is the set of all strings formed by concatenating zero or more strings from .  Now here is the intuition for why A

"concatenating zero strings from " yields , i.e., why  always includes  even when .  A 𝜖 A* 𝜖 A =  ∅

 
Suppose we've designed a security system for a building that periodically runs a status check, say if it detects the 
possibility of there being an intruder or some other breakdown.  The system gets feedback for the check from 
various cameras and sensors and monitors.  Let  be the language of strings representing internal audits of A
sensory data that pass the status check.  Since the check can run multiple times, we can picture it being inside an 
event-driven while loop.  Then  is the language of inputs that will pass every check, no matter how many times A*

the check is activated.  So, finally, what happens if:
 

• , meaning we are sure to fail the check if it is activated; butA =  ∅

• the check is never activated---the while loop runs 0 times and falls through!

 

 



 
The upshot is that the system passes, with the empty string of sensor data.  Because it is a pass, not a fail, the 
language of inputs that pass "every" check (of 0 checks) is , not .  So .𝜖{ } ∅ ∅  =  𝜖0 { }

 
 
 
Now back to our recursive construction of regular expressions and NFAs corresponding to them.  This proves one 
part of a theorem discovered by Kleene in the 1950s.
 
Theorem: For any language  over an alphabet , the following statements are equivalent:A 𝛴

1. There is a regular expression  such that .𝛼 A =  L 𝛼( )

2. There is an NFA  such that .N A =  L N( )

3. There is a DFA  such that .M A =  L M( )

 
We are in the middle of proving 1 2.  Next will be 2 3.  Then 3 1 would "complete the cycle of ⟹ ⟹ ⟹

equivalence" but in fact we will use something more general than an NFA to go to 1.
 

 
 
 
 
 

 

 

s𝛼 f𝛼N𝛼

(I3) Given any regexp ,   is a regexp; ; and we can build:𝛼 𝛾 =  𝛼* L 𝛾  =  L 𝛼( ) ( )*

s𝛾 f𝛾

𝜖

𝜖𝜖

N  =𝛾

Is this good?  We want to make .  Then the IH L N  =  L N( 𝛾) ( 𝛼)* L N  =  L 𝛼( 𝛼) ( )

will give  as needed---to finish the whole proof.L N = L 𝛼 = L 𝛼 = L 𝛾( 𝛾) ( )* * ( )

This is a Feedback Circuit

𝜖𝜖

with bypass.



 
 
 
 
 
 
 
 
 
From NFA to DFA
Theorem (part two of Kleene's Theorem): Given any NFA  we can build a DFA N =  Q,𝛴, 𝛿, s, F( )

 such that .M =  Q,𝛴,𝛥, S,F( ) L M  =  L N( ) ( )

 
Notice that  got capitalized to , which hints that  is a set rather than a single element. And  got capitalized to 

. 
s S S 𝛿

𝛥

  and  were already sets, but they got...curlier.  What does that mean?  Well, that they are "of an even higher Q F
order"---sets of sets, for instance.  An important set of sets is:
 

 also written , called the power set of  and defined as .P Q ,( ) 2Q Q R :  R ⊆  Q{ }

 
Unlike what textbooks tend to say, we will not necessarily make  be all of , just those subsets  that are Q P Q( ) R

reachable from .  What this means is that the states of the DFA will be sets of states of the NFA---the states that S

are possible upon processing a given part of the input string .x
 
This suggests the question, which states (of ) are possible before we process any chars in ?  Obviously the start N x

state  of  is possible, but are there any others?  Yes, if there are -transitions out of .  Define  to be the set s N 𝜖 s E s( )

of states of  that are reachable this way.  If  has no -arcs (out of  or overall), then  is just .  Thus we N N 𝜖 s E s( ) s{ }

begin building  by taking .  We could have said " " in place of " " to begin with, but the notation is M S =  E s( ) S E s( )

useful to define
 

E R  =  r :  for some q ∈  R,  N can process 𝜖 from q to r( ) { }

 
for any subset  of states.  This is called the epsilon-closure of .  If  then  is already epsilon-closed. R R E R  =  R( ) R

It sounds "weeny" technical, but we will only need to use subsets that are -closed. The insight is that the states of 𝜖

the DFA are the possible subsets of states of the NFA.  
 
To make the DFA equivalent to the NFA, at least in terms of the language it accepts, we need to build on the 
correspondence we started with  and .  Let  be some input of length .  For  the s S x ∈  𝛴* n i =  0, 1, … , n - 1, n

design goal  for  is to arrange that:G i( ) M
 

 upon reading  is in the state .M x x ⋯ x1 2 i R  =  r :  N can process x x ⋯ x  from s to ri { 1 2 i }

 

 

 



Now when , the initial portion  is  (more "Zen" reasoning), so  turns out to be just another i =  0 x x ⋯ x1 2 i 𝜖 R0

name for .  By setting , what we've done is achieve the property .  We can now use this as the E s( ) S =  E s( ) G 0( )

basis for an induction  which we build  to achieve. This will give us the final property , G i - 1  ⟹  G i( ) ( ) 𝛥 G n( )

which states:
 

  upon reading all of  is in the state .M x R  =  r :  N can process x from s to rn { }

 
Now  accepts  if and only if  includes at least one accepting state , i.e., .  Thus when we N x Rn f ∈ F R  ∩  F ≠  ∅n

regard a possible subset  as a state of , we should call it accepting if and only if .  Thus the R M R ∩  F ≠  ∅

property  will imply , and getting this for all  and  of length  will yield the G n( ) x ∈  L M  ⟺  x ∈  L N( ) ( ) n x n

conclusion .  So thus far we have defined:L M  =  L N( ) ( )

 
• Q =  possible R ⊆  Q ;{ }

• ;S =  E s( )

• F =  R ∈  Q :  R ∩  F ≠  ∅ .{ }

 
And  is the same.  The only component of  left to define is .  For any  and define𝛴 M 𝛥 P ∈ Q c ∈ 𝛴 

 
.𝛥 P, c  =  r :  for some p ∈ P,  N can process c from p to r( ) { }

 
This set is automatically -closed, since  so any trailing -arcs can count as part of processing .  If we 𝜖 c ⋅ 𝜖  =  c* 𝜖 c

assume  as our induction hypothesis, take the set  which the property  refers to, and define G i - 1( ) Ri-1 G i - 1( )

, then we only need to show that  has the property required for the conclusion .  This is R  =  𝛥 R , xi ( i-1 i) Ri G i( )

that  equals the set of states that  can process the bits  to.  The core of the proof is finally to observe Ri N x ⋯ x1 i

that:
 

 can process  if and only if there is a state  such that  can process N x x ⋯ x x  from s to r1 2 i-1 i p N

 from  to  (which by IH  includes  into ) and such that  can process the char  x x ⋯ x1 2 i-1 s p G i - 1( ) p Ri-1 N xi

from  to .  p r
 
[Lecture will end by reinforcing how this finishes the proof.  Friday will begin by reviewing the proof with a small 
change to the definition of  that makes it quicker and less error-prone to calculate  from , by a process 𝛥 P, c( ) M N
that examples will view as an instance of breadth-first search.]

 

 


