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We make a slight change to the heart of the proof where we left off.  The change saves some time inWe make a slight change to the heart of the proof where we left off.  The change saves some time in  
executing the NFA-to-DFA construction when executing the NFA-to-DFA construction when -arcs are present and reduces errors.  First define-arcs are present and reduces errors.  First define𝜖𝜖

  
pp,, cc   ==  E E qq ::   pp,, cc,, qq   ∈∈  𝛿 𝛿𝛿𝛿(( )) (({{ (( )) }}))

  
for any state for any state  and char  and char .  Recall .  Recall  is  is -closure.  So what this means in simple terms is:-closure.  So what this means in simple terms is:p p ∈∈  Q Q cc EE ⋅⋅(( )) 𝜖𝜖

1. 1. FirstFirst take arc(s) on  take arc(s) on  out of the state  out of the state ..    cc pp

– – If there are none, If there are none, stopstop and put  and put ..pp,, cc   ==  ∅ ∅𝛿𝛿(( ))

– – Else collect all states Else collect all states  reached on those arc(s). reached on those arc(s).qq

2. 2. Then, Then, for each state for each state  reached by processing  reached by processing , add states reached on any series of , add states reached on any series of -arcs-arcs  qq cc 𝜖𝜖

out of out of , if there are any., if there are any.qq

Now we can give a new definition of the DFA's transition function Now we can give a new definition of the DFA's transition function : for any : for any  and  and ,,𝛥𝛥 P P ⊆⊆  Q Q c c ∈∈  𝛴 𝛴

  

..𝛥𝛥 PP,, cc   ==   pp,, cc   (( )) ⋃⋃
  

p ∈ Pp ∈ P

𝛿𝛿(( ))

  
The difference is that we avoid worrying about initial The difference is that we avoid worrying about initial -arcs that could come before processingf -arcs that could come before processingf ..    𝜖𝜖 cc
We only have to track We only have to track trailingtrailing ones in a machine diagram.  The reason is that the trailing arcs at the ones in a machine diagram.  The reason is that the trailing arcs at the  
previous step already took care of any initial ones now.  Initializing the start state previous step already took care of any initial ones now.  Initializing the start state  of the DFA  of the DFA  to to  SS MM

have all states reached by have all states reached by -arcs out of -arcs out of  in  in  sets this in motion.  We need to prove for all  sets this in motion.  We need to prove for all ::𝜖𝜖 ss NN ii
  

GG ii ::  𝛥 𝛥 SS,, xx ⋯⋯ xx   ==   rr ::  N can process x N can process x ⋯⋯ xx  from s to r from s to r ..(( )) **(( 11 ii)) {{ 11 ii }}

  
Here we have Here we have extendedextended  , a function of a state and a char, to , a function of a state and a char, to  which is a function of a state and a which is a function of a state and a  𝛥𝛥 𝛥𝛥**

stringstring, by the basis , by the basis  for all  for all  and for  and for ,,  𝛥𝛥 RR,, 𝜖𝜖   ==  R R**(( )) R R ∈∈   QQ i i ≥≥  1 1

  
..𝛥𝛥 RR,, xx ⋯⋯  x x xx   ==  𝛥 𝛥 𝛥𝛥 RR,, xx ⋯⋯  x x ,,  x x**(( 11 i-1i-1 ii))

**(( 11 i-1i-1)) ii

  
So let So let  stand for  stand for .  Then by the inductive hypothesis .  Then by the inductive hypothesis , ,  equals the equals the  RRi-1i-1 𝛥𝛥 SS,, xx ⋯⋯  x x**(( 11 i-1i-1)) GG ii -- 11(( )) RRi-1i-1

set of states set of states  such that  such that  can process  can process  from  from  to  to .  Now put .  Now put ..    qq NN xx ⋯⋯  x x11 i-1i-1 ss qq RR   ==  𝛥 𝛥ii ((RR ,, xxi-1i-1 ii))

• • Let Let .  Then .  Then for some for some .  By IH .  By IH , ,  can process can process  r r ∈∈  R Rii r r ∈∈ qq,, xx   𝛿𝛿(( ii)) q q ∈∈ RRi-1i-1 GG ii -- 11(( )) NN

 from  from  to  to .  And .  And  can process  can process  from  from  to  to  by definition of  by definition of .  So .  So   xx ⋯⋯  x x11 i-1i-1 ss qq NN xxii qq rr r r ∈∈ qq,, xx   𝛿𝛿(( ii)) NN

can process can process  from  from  to  to ..xx ⋯⋯ xx11 ii ss rr

• • Suppose Suppose  can process  can process  from  from  to  to .  Then---and this is the key point---the.  Then---and this is the key point---the  NN xx ⋯⋯ xx11 ii ss rr

processing goes to some state processing goes to some state  just before the char  just before the char  is processed.  By IH  is processed.  By IH , ,   qq xxii GG ii -- 11(( )) qq

belongs to belongs to .  Moreover, .  Moreover,  because we first do the step that processed the char because we first do the step that processed the char  RRi-1i-1 r r ∈∈   qq,, xx𝛿𝛿(( ii))

 at  at , then any trailing , then any trailing -arcs.  Thus -arcs.  Thus , which means , which means ..xxii qq 𝜖𝜖 r r ∈∈  𝛥 𝛥 RR ,, xx(( i-1i-1 ii)) r r ∈∈  R Rii

  

  



Thus we have established that Thus we have established that  equals the set of states  equals the set of states  such that  such that  can process  can process  from  from   RRii rr NN xx ⋯⋯ xx11 ii ss

to to .  This is the statement .  This is the statement , which is what we had to prove to make the induction go through., which is what we had to prove to make the induction go through.    rr GG ii(( ))

This finally proves the NFA-to-DFA part of Kleene's Theorem. This finally proves the NFA-to-DFA part of Kleene's Theorem. ☒☒
  
  
  

The extra things pointed out have to do with how the states of the DFA tell what the NFA can andThe extra things pointed out have to do with how the states of the DFA tell what the NFA can and  
cannot process:cannot process:

• • The NFA cannot process the string The NFA cannot process the string  from its start state at all.  However you try, you come from its start state at all.  However you try, you come  bbbbbb

  

  



to the NFA state 2 being unable to process a to the NFA state 2 being unable to process a .  Nor can it process .  Nor can it process  from any other state. from any other state.bb bbbbbb

• • However, However,  can process  can process  from start to any one of its three states: from start to any one of its three states:NN aa

– – 11,, aa,, 11(( ))

– – 11,, aa,, 11 11,, 𝜖𝜖,, 22(( ))(( ))

– – ..11,, 𝜖𝜖,, 22 22,, aa,, 33(( ))(( ))

This is shown in the DFA by the single arc This is shown in the DFA by the single arc ..SS,, aa,, 11,, 22,, 33(( {{ }}))

• • But in the string But in the string , even though the initial , even though the initial  "turns on all three lightbulbs of  "turns on all three lightbulbs of ", the", the  x x ==  abbb abbb aa NN

final final  still cannot be processed by  still cannot be processed by .  The DFA .  The DFA  does process it via the computation does process it via the computation  bbbbbb NN MM

, but that computation ends at , but that computation ends at ,,  SS,, aa,, 11,, 22,, 33 11,, 22,, 33 ,, bb,, 22,, 33 22,, 33 ,, bb,, 22 22 ,, bb,,∅∅(( {{ }}))(({{ }} {{ }}))(({{ }} {{ }}))(({{ }} )) ∅∅

which---when present at all---is always a dead state.which---when present at all---is always a dead state.
  
  
Another example: The "Leap of Faith" NFAs Another example: The "Leap of Faith" NFAs  for any  for any ::NNkk k k >>  1 1
  

  
  
Now here is a simple algorithm for telling whether a given string Now here is a simple algorithm for telling whether a given string   matchesmatches a given regexp  a given regexp ::xx 𝛼𝛼

  
1. 1. Convert Convert  into an equivalent NFA  into an equivalent NFA ..𝛼𝛼 NN𝛼𝛼

2. 2. Convert Convert  into an equivalent DFA  into an equivalent DFA ..NN𝛼𝛼 MM𝛼𝛼

3. 3. Run Run  on  on .  If it accepts, say ".  If it accepts, say "yesyes, it matches", else say "no match"., it matches", else say "no match".MM𝛼𝛼 xx
  

This algorithm is This algorithm is correctcorrect, but it is , but it is not efficientnot efficient.  The reason is that step 2 can blow up.  An intuitive.  The reason is that step 2 can blow up.  An intuitive  

  

  

. . .. . .

00,, 11

11

00 00 00
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kk -- 1 arcs1 arcs

LL NN   ==   00 ++ 11 11 00 ++ 11(( kk)) (( ))** (( ))k-1k-1

..==   x x ∈∈   00,, 11 ::  the kth bit of x from the end is a 1 the kth bit of x from the end is a 1{{ }}**

FactFact (will be proved next week): Whereas the NFA  (will be proved next week): Whereas the NFA  has only  has only  states, states,NNkk kk ++ 11

 the smallest DFA  the smallest DFA  such that  such that  requires  requires  states.   states.  MMkk LL MM   ==  L L NN(( kk)) (( kk)) 22kk

This is a case of This is a case of exponential blowupexponential blowup in the NFA-to-DFA algorithm.  in the NFA-to-DFA algorithm. 



reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" thatreason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that  
would ever be used on all possible strings would ever be used on all possible strings , but most of them are unnecessary for the particular , but most of them are unnecessary for the particular   xx xx
that was given.that was given.    
  
There is, however, a better way that builds just the set-states There is, however, a better way that builds just the set-states  that are actually that are actually  RR ,, …… ,,RR ,, …… ,,RR11 ii nn

encountered in the particular computation on the particular encountered in the particular computation on the particular .  We have .  We have  to begin to begin  xx RR   ==  S  S ==  E E ss00 (( ))

with.  To build each with.  To build each  from the previous  from the previous , iterate through every , iterate through every  and union together all and union together all  RRii RRi-1i-1 q q ∈∈ RRi-1i-1

the sets the sets .  If .  If  has  has  states---which roughly equals the number of operations in  states---which roughly equals the number of operations in ---then that---then that  qq,, xx𝛿𝛿(( ii)) NN𝛼𝛼 kk 𝛼𝛼

takes order takes order  steps.  This is at worst cubic in the length  steps.  This is at worst cubic in the length  of  of  and  and  together, so this together, so this  nn ⋅⋅ kk ⋅⋅ kk nn++ kkOO(( )) xx 𝛼𝛼

counts as a counts as a polynomial-time algorithmpolynomial-time algorithm.  It is in fact the algorithm actually used by the .  It is in fact the algorithm actually used by the grepgrep  
command in Linux/UNIX.command in Linux/UNIX.    
  
Generalized NFAs (GNFAs) --- having only 2 states.Generalized NFAs (GNFAs) --- having only 2 states.
  
A A generalized NFAgeneralized NFA   can have any regular expression on any arc. A string  can have any regular expression on any arc. A string  is "accepted" by  is "accepted" by  if it if it  GG xx GG

can be broken into can be broken into  substrings such that each substring matches the respective regexp in a path of substrings such that each substring matches the respective regexp in a path of  mm

 arcs of  arcs of  that begins at  that begins at  and ends in a final state  and ends in a final state .  A regular NFA in in fact a GNFA in which.  A regular NFA in in fact a GNFA in which  mm GG ss ff

every arc has a "basic" regular expression---that is, just a char every arc has a "basic" regular expression---that is, just a char  in  in , or , or ..    cc 𝛴𝛴 𝜖𝜖

  
I do not regard GNFAs as "machines" that can be "executed"---even in the sense where we couldI do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could  
say that the say that the grepgrep algorithm executed the NFA  algorithm executed the NFA  on  on .  I regard them as helpful shorthand for.  I regard them as helpful shorthand for  NN𝛼𝛼 xx

diagramming languages.  The most illuminating case IMHO of this is for two-state GNFAs:diagramming languages.  The most illuminating case IMHO of this is for two-state GNFAs:

  

  

  

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ff
GG

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾   (( )) sfsf
**

**
**

                                            ==  𝛼 𝛼 𝛽𝛽 𝛾 𝛾 ++  𝜂𝛼 𝜂𝛼 𝛽𝛽** ** **

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ff
GG

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 ..(( )) ssss
**

**

 is pronounced "ate-a" in the US, "eat-a" in the UK. is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂𝜂


