
CSE491/596 Lecture 9/11/20: NFA-to-DFA Example and Basic GNFAsCSE491/596 Lecture 9/11/20: NFA-to-DFA Example and Basic GNFAs

We make a slight change to the heart of the proof where we left off. The change saves some time inWe make a slight change to the heart of the proof where we left off. The change saves some time in
executing the NFA-to-DFA construction when executing the NFA-to-DFA construction when -arcs are present and reduces errors. First define-arcs are present and reduces errors. First define𝜖𝜖

pp,, cc == E E qq :: pp,, cc,, qq ∈∈ 𝛿 𝛿𝛿𝛿(()) (({{ (()) }}))

for any state for any state and char and char . Recall . Recall is is -closure. So what this means in simple terms is:-closure. So what this means in simple terms is:p p ∈∈ Q Q cc EE ⋅⋅(()) 𝜖𝜖

1. 1. FirstFirst take arc(s) on take arc(s) on out of the state out of the state .. cc pp

– – If there are none, If there are none, stopstop and put and put ..pp,, cc == ∅ ∅𝛿𝛿(())

– – Else collect all states Else collect all states reached on those arc(s). reached on those arc(s).qq

2. 2. Then, Then, for each state for each state reached by processing reached by processing , add states reached on any series of , add states reached on any series of -arcs-arcs qq cc 𝜖𝜖

out of out of , if there are any., if there are any.qq

Now we can give a new definition of the DFA's transition function Now we can give a new definition of the DFA's transition function : for any : for any and and ,,𝛥𝛥 P P ⊆⊆ Q Q c c ∈∈ 𝛴 𝛴

..𝛥𝛥 PP,, cc == pp,, cc (()) ⋃⋃

p ∈ Pp ∈ P

𝛿𝛿(())

The difference is that we avoid worrying about initial The difference is that we avoid worrying about initial -arcs that could come before processingf -arcs that could come before processingf .. 𝜖𝜖 cc
We only have to track We only have to track trailingtrailing ones in a machine diagram. The reason is that the trailing arcs at the ones in a machine diagram. The reason is that the trailing arcs at the
previous step already took care of any initial ones now. Initializing the start state previous step already took care of any initial ones now. Initializing the start state of the DFA of the DFA to to SS MM

have all states reached by have all states reached by -arcs out of -arcs out of in in sets this in motion. We need to prove for all sets this in motion. We need to prove for all ::𝜖𝜖 ss NN ii

GG ii :: 𝛥 𝛥 SS,, xx ⋯⋯ xx == rr :: N can process x N can process x ⋯⋯ xx from s to r from s to r ..(()) **((11 ii)) {{ 11 ii }}

Here we have Here we have extendedextended , a function of a state and a char, to , a function of a state and a char, to which is a function of a state and a which is a function of a state and a 𝛥𝛥 𝛥𝛥**

stringstring, by the basis , by the basis for all for all and for and for ,, 𝛥𝛥 RR,, 𝜖𝜖 == R R**(()) R R ∈∈ QQ i i ≥≥ 1 1

..𝛥𝛥 RR,, xx ⋯⋯ x x xx == 𝛥 𝛥 𝛥𝛥 RR,, xx ⋯⋯ x x ,, x x**((11 i-1i-1 ii))

**((11 i-1i-1)) ii

So let So let stand for stand for . Then by the inductive hypothesis . Then by the inductive hypothesis , , equals the equals the RRi-1i-1 𝛥𝛥 SS,, xx ⋯⋯ x x**((11 i-1i-1)) GG ii -- 11(()) RRi-1i-1

set of states set of states such that such that can process can process from from to to . Now put . Now put .. qq NN xx ⋯⋯ x x11 i-1i-1 ss qq RR == 𝛥 𝛥ii ((RR ,, xxi-1i-1 ii))

• • Let Let . Then . Then for some for some . By IH . By IH , , can process can process r r ∈∈ R Rii r r ∈∈ qq,, xx 𝛿𝛿((ii)) q q ∈∈ RRi-1i-1 GG ii -- 11(()) NN

 from from to to . And . And can process can process from from to to by definition of by definition of . So . So xx ⋯⋯ x x11 i-1i-1 ss qq NN xxii qq rr r r ∈∈ qq,, xx 𝛿𝛿((ii)) NN

can process can process from from to to ..xx ⋯⋯ xx11 ii ss rr

• • Suppose Suppose can process can process from from to to . Then---and this is the key point---the. Then---and this is the key point---the NN xx ⋯⋯ xx11 ii ss rr

processing goes to some state processing goes to some state just before the char just before the char is processed. By IH is processed. By IH , , qq xxii GG ii -- 11(()) qq

belongs to belongs to . Moreover, . Moreover, because we first do the step that processed the char because we first do the step that processed the char RRi-1i-1 r r ∈∈ qq,, xx𝛿𝛿((ii))

 at at , then any trailing , then any trailing -arcs. Thus -arcs. Thus , which means , which means ..xxii qq 𝜖𝜖 r r ∈∈ 𝛥 𝛥 RR ,, xx((i-1i-1 ii)) r r ∈∈ R Rii

Thus we have established that Thus we have established that equals the set of states equals the set of states such that such that can process can process from from RRii rr NN xx ⋯⋯ xx11 ii ss

to to . This is the statement . This is the statement , which is what we had to prove to make the induction go through., which is what we had to prove to make the induction go through. rr GG ii(())

This finally proves the NFA-to-DFA part of Kleene's Theorem. This finally proves the NFA-to-DFA part of Kleene's Theorem. ☒☒

The extra things pointed out have to do with how the states of the DFA tell what the NFA can andThe extra things pointed out have to do with how the states of the DFA tell what the NFA can and
cannot process:cannot process:

• • The NFA cannot process the string The NFA cannot process the string from its start state at all. However you try, you come from its start state at all. However you try, you come bbbbbb

to the NFA state 2 being unable to process a to the NFA state 2 being unable to process a . Nor can it process . Nor can it process from any other state. from any other state.bb bbbbbb

• • However, However, can process can process from start to any one of its three states: from start to any one of its three states:NN aa

– – 11,, aa,, 11(())

– – 11,, aa,, 11 11,, 𝜖𝜖,, 22(())(())

– – ..11,, 𝜖𝜖,, 22 22,, aa,, 33(())(())

This is shown in the DFA by the single arc This is shown in the DFA by the single arc ..SS,, aa,, 11,, 22,, 33(({{ }}))

• • But in the string But in the string , even though the initial , even though the initial "turns on all three lightbulbs of "turns on all three lightbulbs of ", the", the x x == abbb abbb aa NN

final final still cannot be processed by still cannot be processed by . The DFA . The DFA does process it via the computation does process it via the computation bbbbbb NN MM

, but that computation ends at , but that computation ends at ,, SS,, aa,, 11,, 22,, 33 11,, 22,, 33 ,, bb,, 22,, 33 22,, 33 ,, bb,, 22 22 ,, bb,,∅∅(({{ }}))(({{ }} {{ }}))(({{ }} {{ }}))(({{ }})) ∅∅

which---when present at all---is always a dead state.which---when present at all---is always a dead state.

Another example: The "Leap of Faith" NFAs Another example: The "Leap of Faith" NFAs for any for any ::NNkk k k >> 1 1

Now here is a simple algorithm for telling whether a given string Now here is a simple algorithm for telling whether a given string matchesmatches a given regexp a given regexp ::xx 𝛼𝛼

1. 1. Convert Convert into an equivalent NFA into an equivalent NFA ..𝛼𝛼 NN𝛼𝛼

2. 2. Convert Convert into an equivalent DFA into an equivalent DFA ..NN𝛼𝛼 MM𝛼𝛼

3. 3. Run Run on on . If it accepts, say ". If it accepts, say "yesyes, it matches", else say "no match"., it matches", else say "no match".MM𝛼𝛼 xx

This algorithm is This algorithm is correctcorrect, but it is , but it is not efficientnot efficient. The reason is that step 2 can blow up. An intuitive. The reason is that step 2 can blow up. An intuitive

.

00,, 11

11

00 00 00

11 11 11

kk -- 1 arcs1 arcs

LL NN == 00 ++ 11 11 00 ++ 11((kk)) (())** (())k-1k-1

..== x x ∈∈ 00,, 11 :: the kth bit of x from the end is a 1 the kth bit of x from the end is a 1{{ }}**

FactFact (will be proved next week): Whereas the NFA (will be proved next week): Whereas the NFA has only has only states, states,NNkk kk ++ 11

 the smallest DFA the smallest DFA such that such that requires requires states. states. MMkk LL MM == L L NN((kk)) ((kk)) 22kk

This is a case of This is a case of exponential blowupexponential blowup in the NFA-to-DFA algorithm. in the NFA-to-DFA algorithm.

reason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" thatreason for the gross inefficieincy is that step 2 makes you create in advance all the "set states" that
would ever be used on all possible strings would ever be used on all possible strings , but most of them are unnecessary for the particular , but most of them are unnecessary for the particular xx xx
that was given.that was given.

There is, however, a better way that builds just the set-states There is, however, a better way that builds just the set-states that are actually that are actually RR ,, …… ,,RR ,, …… ,,RR11 ii nn

encountered in the particular computation on the particular encountered in the particular computation on the particular . We have . We have to begin to begin xx RR == S S == E E ss00 (())

with. To build each with. To build each from the previous from the previous , iterate through every , iterate through every and union together all and union together all RRii RRi-1i-1 q q ∈∈ RRi-1i-1

the sets the sets . If . If has has states---which roughly equals the number of operations in states---which roughly equals the number of operations in ---then that---then that qq,, xx𝛿𝛿((ii)) NN𝛼𝛼 kk 𝛼𝛼

takes order takes order steps. This is at worst cubic in the length steps. This is at worst cubic in the length of of and and together, so this together, so this nn ⋅⋅ kk ⋅⋅ kk nn++ kkOO(()) xx 𝛼𝛼

counts as a counts as a polynomial-time algorithmpolynomial-time algorithm. It is in fact the algorithm actually used by the . It is in fact the algorithm actually used by the grepgrep
command in Linux/UNIX.command in Linux/UNIX.

Generalized NFAs (GNFAs) --- having only 2 states.Generalized NFAs (GNFAs) --- having only 2 states.

A A generalized NFAgeneralized NFA can have any regular expression on any arc. A string can have any regular expression on any arc. A string is "accepted" by is "accepted" by if it if it GG xx GG

can be broken into can be broken into substrings such that each substring matches the respective regexp in a path of substrings such that each substring matches the respective regexp in a path of mm

 arcs of arcs of that begins at that begins at and ends in a final state and ends in a final state . A regular NFA in in fact a GNFA in which. A regular NFA in in fact a GNFA in which mm GG ss ff

every arc has a "basic" regular expression---that is, just a char every arc has a "basic" regular expression---that is, just a char in in , or , or .. cc 𝛴𝛴 𝜖𝜖

I do not regard GNFAs as "machines" that can be "executed"---even in the sense where we couldI do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could
say that the say that the grepgrep algorithm executed the NFA algorithm executed the NFA on on . I regard them as helpful shorthand for. I regard them as helpful shorthand for NN𝛼𝛼 xx

diagramming languages. The most illuminating case IMHO of this is for two-state GNFAs:diagramming languages. The most illuminating case IMHO of this is for two-state GNFAs:

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ff
GG

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾 (()) sfsf
**

**
**

 == 𝛼 𝛼 𝛽𝛽 𝛾 𝛾 ++ 𝜂𝛼 𝜂𝛼 𝛽𝛽** ** **

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ff
GG

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 ..(()) ssss
**

**

 is pronounced "ate-a" in the US, "eat-a" in the UK. is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂𝜂

