
 
The Main Theorem About Regular Expressions and Finite Automata
 
Theorem: For any language  over an alphabet , the following statements are equivalent:A 𝛴

1. There is a regular expression  such that .𝛼 A =  L 𝛼( )

2. There is an NFA  such that .N A =  L N( )

3. There is a DFA  such that .M A =  L M( )

 
 
Example (moved up from last time): The "Leap of Faith" NFAs  for any :Nk k >  1
 

 
 
From NFA to DFA
Theorem (part two of Kleene's Theorem): Given any NFA  we can build a DFA N =  Q,𝛴, 𝛿, s, F( )

 such that .M =  Q,𝛴,𝛥, S,F( ) L M  =  L N( ) ( )

 
Notice that  got capitalized to , which hints that  is a set rather than a single element. And  got s S S 𝛿

capitalized to .   and  were already sets, but they got...curlier.  What does that mean?  Well, that 𝛥 Q F
they are "of an even higher order"---sets of sets, for instance.  An important set of sets is:
 

 also written , called the power set of  and defined as .P Q ,( ) 2Q Q R :  R ⊆  Q{ }
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k - 1 arcs

L N  =  0 + 1 1 0 + 1( k) ( )* ( )k-1

.=  x ∈  0, 1 :  the kth bit of x from the end is a 1{ }*

Fact (will be proved later): Whereas the NFA  has only  states,Nk k + 1

 the smallest DFA  such that  requires  states.  Mk L M  =  L N( k) ( k) 2k

This is a case of exponential blowup in the NFA-to-DFA algorithm. 
For now, we just care that an equivalent DFA can be built.
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Example: x =  101101 On OnOn



 
Unlike what textbooks tend to say, we will not necessarily make  be all of , just those subsets  Q P Q( ) R

that are reachable from .  What this means is that the states of the DFA will be sets of states of the S

NFA---the states that are possible upon processing a given part of the input string .x
 
This suggests the question, which states (of ) are possible before we process any chars in ?  N x

Obviously the start state  of  is possible, but are there any others?  Yes, if there are -transitions out s N 𝜖

of .  Define  to be the set of states of  that are reachable this way.  If  has no -arcs (out of  or s E s( ) N N 𝜖 s

overall), then  is just .  Thus we begin building  by taking .  We could have said " " E s( ) s{ } M S =  E s( ) S

in place of " " to begin with, but the notation is useful to defineE s( )

 
E R  =  r :  for some q ∈  R,  N can process 𝜖 from q to r( ) { }

 
for any subset  of states.  This is called the epsilon-closure of .  If  then  is already R R E R  =  R( ) R

epsilon-closed. It sounds "weeny" technical, but we will only need to use subsets that are -closed. The 𝜖

insight is that the states of the DFA are the possible subsets of states of the NFA.  
 
To make the DFA equivalent to the NFA, at least in terms of the language it accepts, we need to build 
on the correspondence we started with  and .  Let  be some input of length .  For s S x ∈  𝛴* n

 the design goal  for  is to arrange that:i =  0, 1, … , n - 1, n G i( ) M
 

 upon reading  is in the state .M x x ⋯ x1 2 i R  =  r :  N can process x x ⋯ x  from s to ri { 1 2 i }

 
Now when , the initial portion  is  (more "Zen" reasoning), so  turns out to be just i =  0 x x ⋯ x1 2 i 𝜖 R0

another name for .  By setting , what we've done is achieve the property .  We can E s( ) S =  E s( ) G 0( )

now use this as the basis for an induction  which we build  to achieve. This will G i - 1  ⟹  G i( ) ( ) 𝛥

give us the final property , which states:G n( )

 
  upon reading all of  is in the state .M x R  =  r :  N can process x from s to rn { }

 
Now  accepts  if and only if  includes at least one accepting state , i.e., .  N x Rn f ∈ F R  ∩  F ≠  ∅n

Thus when we regard a possible subset  as a state of , we should call it accepting if and only if R M

.  Thus the property  will imply , and getting this for all  R ∩  F ≠  ∅ G n( ) x ∈  L M  ⟺  x ∈  L N( ) ( ) n

and  of length  will yield the conclusion .  So thus far we have defined:x n L M  =  L N( ) ( )

 
• Q =  possible R ⊆  Q ;{ }

• ;S =  E s( )

• F =  R ∈  Q :  R ∩  F ≠  ∅ .{ }

 
And  is the same.  The only component of  left to define is .  For any  and define𝛴 M 𝛥 P ∈ Q c ∈ 𝛴 

 

 

 



.𝛥 P, c  =  r :  for some p ∈ P,  N can process c from p to r( ) { }

 
This set is automatically -closed, since  so any trailing -arcs can count as part of 𝜖 c ⋅ 𝜖  =  c*

𝜖

processing .  If we assume  as our induction hypothesis, take the set  which the property c G i - 1( ) Ri-1

 refers to, and define , then we only need to show that  has the property G i - 1( ) R  =  𝛥 R , xi ( i-1 i) Ri

required for the conclusion .  This is that  equals the set of states that  can process the bits G i( ) Ri N

 to.  The core of the proof is finally to observe that:x ⋯ x1 i

 
 can process  if and only if there is a state  such that  can process N x x ⋯ x x  from s to r1 2 i-1 i p N

 from  to  (which by IH  includes  into ) and such that  can process x x ⋯ x1 2 i-1 s p G i - 1( ) p Ri-1 N

the char  from  to .  xi p r
 
How does this finish the proof?   Let's see...  We can make a small change to the definition of  𝛥 P, c( )

that makes it quicker and less error-prone to calculate  from , by a process that examples will view M N
as an instance of breadth-first search.
 
Example
 
We make a slight change to the heart of the proof where we left off.  The change saves some time in 
executing the NFA-to-DFA construction when -arcs are present and reduces errors.  First define𝜖

 
p, c  =  E q :  p, c, q  ∈  𝛿𝛿( ) ({ ( ) })

 
for any state  and char .  Recall  is -closure.  So what this means in simple terms is:p ∈  Q c E ⋅( ) 𝜖

1. First take arc(s) on  out of the state .  c p

– If there are none, stop and put .p, c  =  ∅𝛿( )

– Else collect all states  reached on those arc(s).q

2. Then, for each state  reached by processing , add states reached on any series of -arcs out q c 𝜖

of , if there are any.q

Now we can give a new definition of the DFA's transition function : for any  and ,𝛥 P ⊆  Q c ∈  𝛴

 

.𝛥 P, c  =  p, c  ( ) ⋃
 

p ∈ P

𝛿( )

 
The difference is that we avoid worrying about initial -arcs that could come before processingf .  We 𝜖 c
only have to track trailing ones in a machine diagram.  The reason is that the trailing arcs at the 
previous step already took care of any initial ones now.  Initializing the start state  of the DFA  to S M

have all states reached by -arcs out of  in  sets this in motion.  We need to prove for all :𝜖 s N i
 

G i :  𝛥 S, x ⋯ x  =  r :  N can process x ⋯ x  from s to r .( ) *( 1 i) { 1 i }

 

 

 



Here we have extended , a function of a state and a char, to  which is a function of a state and a 𝛥 𝛥
*

string, by the basis  for all  and for , 𝛥 R, 𝜖  =  R*( ) R ∈  Q i ≥  1

 
.𝛥 R, x ⋯  x x  =  𝛥 𝛥 R, x ⋯  x ,  x*( 1 i-1 i)

*( 1 i-1) i

 
So let  stand for .  Then by the inductive hypothesis ,  equals the set Ri-1 𝛥 S, x ⋯  x*( 1 i-1) G i - 1( ) Ri-1

of states  such that  can process  from  to .  Now put .  q N x ⋯  x1 i-1 s q R  =  𝛥i (R , xi-1 i)

• Let .  Then for some .  By IH ,  can process  r ∈  Ri r ∈ q, x  𝛿( i) q ∈ Ri-1 G i - 1( ) N x ⋯  x1 i-1

from  to .  And  can process  from  to  by definition of .  So  can process s q N xi q r r ∈ q, x  𝛿( i) N

 from  to .x ⋯ x1 i s r

• Suppose  can process  from  to .  Then---and this is the key point---the processing N x ⋯ x1 i s r

goes to some state  just before the char  is processed.  By IH ,  belongs to .  q xi G i - 1( ) q Ri-1

Moreover,  because we first do the step that processed the char  at , then any r ∈  q, x𝛿( i) xi q

trailing -arcs.  Thus , which means .𝜖 r ∈  𝛥 R , x( i-1 i) r ∈  Ri

Thus we have established that  equals the set of states  such that  can process  from  to Ri r N x ⋯ x1 i s

.  This is the statement , which is what we had to prove to make the induction go through.  This r G i( )

finally proves the NFA-to-DFA part of Kleene's Theorem. ☒
 
 
 

 

 



The extra things pointed out have to do with how the states of the DFA tell what the NFA can and 
cannot process:

• The NFA cannot process the string  from its start state at all.  However you try, you come to bbb

the NFA state 2 being unable to process a .  Nor can it process  from any other state.b bbb

• However,  can process  from start to any one of its three states:N a

– 1, a, 1( )

– 1, a, 1 1, 𝜖, 2( )( )

– .1, 𝜖, 2 2, a, 3( )( )

This is shown in the DFA by the single arc .S, a, 1, 2, 3( { })

 

 



• But in the string , even though the initial  "turns on all three lightbulbs of ", the final x =  abbb a N

 still cannot be processed by .  The DFA  does process it via the computation bbb N M

, but that computation ends at , S, a, 1, 2, 3 1, 2, 3 , b, 2, 3 2, 3 , b, 2 2 , b,∅( { })({ } { })({ } { })({ } ) ∅

which---when present at all---is always a dead state.
 
 
 

 

 


