
Lecture Monday, 9/14/20: GNFAs and Regular ExpressionsLecture Monday, 9/14/20: GNFAs and Regular Expressions

Another example: The "Leap of Faith" NFAs Another example: The "Leap of Faith" NFAs for any for any ::NNkk k k >> 1 1

Now here is a simple algorithm for telling whether a given string Now here is a simple algorithm for telling whether a given string matchesmatches a given regexp a given regexp ::xx 𝛼𝛼

1. 1. Convert Convert into an equivalent NFA into an equivalent NFA ..𝛼𝛼 NN𝛼𝛼

2. 2. Convert Convert into an equivalent DFA into an equivalent DFA ..NN𝛼𝛼 MM𝛼𝛼

3. 3. Run Run on on . If it accepts, say ". If it accepts, say "yesyes, it matches", else say "no match"., it matches", else say "no match".MM𝛼𝛼 xx

This algorithm is This algorithm is correctcorrect, but it is , but it is not efficientnot efficient. The reason is that step 2 can blow up. An intuitive reason for. The reason is that step 2 can blow up. An intuitive reason for
the gross inefficieincy is that step 2 makes you create in advance all the "set states" that would ever bethe gross inefficieincy is that step 2 makes you create in advance all the "set states" that would ever be
used on all possible strings used on all possible strings , but most of them are unnecessary for the particular , but most of them are unnecessary for the particular that was given. that was given. xx xx

There is, however, a better way that builds just the set-states There is, however, a better way that builds just the set-states that are actually that are actually RR ,, …… ,, RR ,, …… ,, RR11 ii nn

encountered in the particular computation on the particular encountered in the particular computation on the particular . We have . We have to begin with. To to begin with. To xx RR == S S == E E ss00 (())

build each build each from the previous from the previous , iterate through every , iterate through every and union together all the sets and union together all the sets .. RRii RRi-1i-1 q q ∈∈ RRi-1i-1 qq,, xx𝛿𝛿((ii))

 If If has has states---which roughly equals the number of operations in states---which roughly equals the number of operations in ---then that takes order ---then that takes order NN𝛼𝛼 kk 𝛼𝛼 nn ⋅⋅ kk ⋅⋅ kk

steps. This is at worst cubic in the length steps. This is at worst cubic in the length of of and and together, so this counts as a together, so this counts as a polynomial-polynomial-nn ++ kkOO(()) xx 𝛼𝛼

time algorithmtime algorithm. It is in fact the algorithm actually used by the . It is in fact the algorithm actually used by the grepgrep command in Linux/UNIX. command in Linux/UNIX.

.

00,, 11

11

00 00 00

11 11 11

kk -- 1 arcs1 arcs

LL NN == 00 ++ 11 11 00 ++ 11((kk)) (())** (())k-1k-1

..== x x ∈∈ 00,, 11 :: the kth bit of x from the end is a 1 the kth bit of x from the end is a 1{{ }}**

FactFact (will be proved next week): Whereas the NFA (will be proved next week): Whereas the NFA has only has only states, states,NNkk kk ++ 11

 the smallest DFA the smallest DFA such that such that requires requires states. states. MMkk LL MM == L L NN((kk)) ((kk)) 22kk

This is a case of This is a case of exponential blowupexponential blowup in the NFA-to-DFA algorithm. in the NFA-to-DFA algorithm.

Generalized NFAs (GNFAs) --- having only 2 states.Generalized NFAs (GNFAs) --- having only 2 states.

A A generalized NFAgeneralized NFA can have any regular expression on any arc. A string can have any regular expression on any arc. A string is "accepted" by is "accepted" by if it can be if it can be GG xx GG

broken into broken into substrings such that each substring matches the respective regexp in a path of substrings such that each substring matches the respective regexp in a path of arcs of arcs of mm mm GG

that begins at that begins at and ends in a final state and ends in a final state . A regular NFA in in fact a GNFA in which every arc has a. A regular NFA in in fact a GNFA in which every arc has a
"basic""basic"

ss ff

regular expression---that is, just a char regular expression---that is, just a char in in , or , or .. cc 𝛴𝛴 𝜖𝜖

I do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could say thatI do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could say that
the the grepgrep algorithm executed the NFA algorithm executed the NFA on on . I regard them as helpful shorthand for diagramming. I regard them as helpful shorthand for diagramming NN𝛼𝛼 xx

languages. Note that the above diagram for languages. Note that the above diagram for makes the loop at its start state look like a GNFA arc makes the loop at its start state look like a GNFA arc NNkk

labeled labeled . The only reasoning for not using single arcs labeled . The only reasoning for not using single arcs labeled or or in the iterated part of the in the iterated part of the 00 ++ 11 00 ++ 11 00,, 11

machine is to emphasize the contrast with the single arc out of the start state labeled machine is to emphasize the contrast with the single arc out of the start state labeled only. With only. With 11

concatenation and star the shorthand is more substantial. The most illuminating case IMHO of this is forconcatenation and star the shorthand is more substantial. The most illuminating case IMHO of this is for
two-state GNFAs:two-state GNFAs:

Note that in Note that in , we called the second state , we called the second state rather than rather than because it is not accepting. No accepting because it is not accepting. No accepting GG22 tt ff

computation can begin or end at a non-final state computation can begin or end at a non-final state that is different from the start state. Hence, if the that is different from the start state. Hence, if the qq

computation enters computation enters from some state from some state , then it must exit at some state , then it must exit at some state (which can be the same as (which can be the same as).). qq pp rr pp

Considering multiple such states Considering multiple such states gives us the following diagram: gives us the following diagram:rr,, r'r',, r''r''

General GNFA Case:General GNFA Case:

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ff
GG11

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾 ((11)) sfsf
**

**
**

 == 𝛼 𝛼 𝛽𝛽 𝛾 𝛾 ++ 𝜂𝛼 𝜂𝛼 𝛽𝛽** **
**

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ttGG22

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂((22)) ssss
**

**

 is pronounced "ate-a" in the US, "eat-a" in the UK. is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂𝜂

𝛽𝛽

𝜂𝜂

ss ff
GG33

𝛼𝛼 𝛾𝛾

LL GG == L L ∪∪ L L((33)) ssss sfsf

If we are programming this with a If we are programming this with a RegExpRegExp package, then we can represent a given package, then we can represent a given -state finite automaton-state finite automaton nn

(DFA, NFA, or GNFA, all the same to start with) by an (DFA, NFA, or GNFA, all the same to start with) by an matrix matrix of of RegExpRegExp. We can number the non-. We can number the non-n n ×× n n TT

accepting states different from the start state by accepting states different from the start state by for whatever for whatever applies. (If start is the only applies. (If start is the only mm,, …… ,, nn mm

accepting state then we could take accepting state then we could take as low as as low as , but it saves "mess" to take , but it saves "mess" to take in this case too so in this case too so mm 22 m m == 3 3

that execution will end with that execution will end with above, at which point the answer can be shortcutted by saying what above, at which point the answer can be shortcutted by saying what GG22

 are and citing the abstract formula. Most sources say to add a new start state and make all are and citing the abstract formula. Most sources say to add a new start state and make all 𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂
original final states go to a new one, but while doing this makes the proof look neater, it is more work that isoriginal final states go to a new one, but while doing this makes the proof look neater, it is more work that is
highly typo-prone.) Then let one loop variable highly typo-prone.) Then let one loop variable run over the nodes run over the nodes to be eliminated, let to be eliminated, let run over all run over all kk qq ii

states up to states up to which are treated as possible entry states which are treated as possible entry states , and let , and let run over potential exist states run over potential exist states .. kk -- 11 pp jj rr
Then the main code is simply:Then the main code is simply:

for k = n downto m:for k = n downto m:

for i = 1 to k-1:for i = 1 to k-1:
for j = 1 to k-1:for j = 1 to k-1:

T(i,j) += T(i,k)T(i,j) += T(i,k) T(k,k)T(k,k) T(k,j).T(k,j).⋅⋅ ⋅⋅
**

(The convenience of writing "+=" here is one reason I like using (The convenience of writing "+=" here is one reason I like using rather than rather than for union.) Note that even for union.) Note that even ++ ∪∪

if there is no self-loop at if there is no self-loop at , so that , so that (or (or ; it doesn't matter), the update is not killed because; it doesn't matter), the update is not killed because qq TT kk,, kk == ∅ ∅(()) 𝜖𝜖

. But if there is no arc from . But if there is no arc from into into , that is, if , that is, if , then the right-hand side does get, then the right-hand side does get TT kk,, kk == 𝜖 𝜖 (())** ii kk TT ii,, kk == ∅ ∅(())

nulled and the update is simply a no-op. Likewise if no arc from nulled and the update is simply a no-op. Likewise if no arc from out to out to , whereupon , whereupon .. kk jj TT kk,, jj == ∅ ∅(())

pp qq

rr

r'r'

r''r''

𝛽𝛽 𝛾𝛾

𝜂𝜂

𝜂''𝜂''

𝜂'𝜂'

𝛼𝛼

𝛼'𝛼'

𝛼''𝛼''

𝛼𝛼 == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂newnew old old
**

𝛼'𝛼' == 𝛼' 𝛼' ++ 𝛽𝛾 𝛽𝛾 𝜂'𝜂'newnew old old
**

𝛼''𝛼'' == 𝛼'' 𝛼'' ++ 𝛽𝛾 𝛽𝛾 𝜂''𝜂''newnew old old
**

The last works if The last works if when when p p == r'' r''

 is a self-loop at is a self-loop at . If the self-. If the self-𝛼''𝛼'' pp
loop is absent, it turns out not toloop is absent, it turns out not to
matter whether you take it to givematter whether you take it to give

 or or . The reason is that it will. The reason is that it will∅∅ 𝜖𝜖
ultimately be inside a Kleene star,ultimately be inside a Kleene star,
and and ∅∅((++ 𝜁 𝜁 == 𝜖 𝜖 ++ 𝜁 𝜁 == 𝜁 𝜁))** (())** **

for any regular expression for any regular expression (zeta). (zeta). 𝜁𝜁

If the arc with If the arc with is absent, that is is absent, that is𝛼𝛼

the same as its having the same as its having . . 𝛼 𝛼 == ∅ ∅

Once we have Once we have bypassedbypassed every every
edge into edge into , we can , we can deletedelete ..qq qq

The GNFA The GNFA obtained after obtained after G'G'

updating updating is is𝛼𝛼,,𝛼'𝛼',,𝛼''𝛼'',, ……

equivalent to the original equivalent to the original ..GG

The result of executing the code is a GNFA The result of executing the code is a GNFA with all states accepting except possibly the start state. If with all states accepting except possibly the start state. If G'G'

the start state, too, is accepting, it is tempting to think the start state, too, is accepting, it is tempting to think , i.e., that , i.e., that accepts all strings, but that is accepts all strings, but that is LL G'G' == 𝛴 𝛴(()) G'G'

not true because GNFA arcs can have "holes" that prevent matching and hence processing all strings. Fornot true because GNFA arcs can have "holes" that prevent matching and hence processing all strings. For
example, consider the simple one-state GNFAexample, consider the simple one-state GNFA

So if you get a So if you get a with two or more accepting states different from the start state, then you do have with two or more accepting states different from the start state, then you do haveG'G'

to add a new final state to add a new final state with arcs from all the old final states, declare with arcs from all the old final states, declare to be the only final state, and to be the only final state, and ff ff

eliminate all of the previous accepting states apart from eliminate all of the previous accepting states apart from . If you also make . If you also make a new, non-accepting state, a new, non-accepting state, ss ss

then you do get the final answer then you do get the final answer "on a silver platter": "on a silver platter":𝜌 𝜌 == L L GG(())

But the final expression But the final expression you get is often quite long, and the steps for the last one or two states you you get is often quite long, and the steps for the last one or two states you 𝜌𝜌

eliminated often amount to hand-copying long subexpressions corresponding to eliminated often amount to hand-copying long subexpressions corresponding to in the above in the above 𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂

formulas for the 2-state GNFAs anyway. The ground rules are hence that once you get down to two states,formulas for the 2-state GNFAs anyway. The ground rules are hence that once you get down to two states,
you can just cite the abstract formula to say what the final regular expression will be. And if the originallyyou can just cite the abstract formula to say what the final regular expression will be. And if the originally
given GNFA has at most one accpeting state besides the start state, then the above code body will givegiven GNFA has at most one accpeting state besides the start state, then the above code body will give
your final answer without needing to add a new final state. Why add one or two iterations to the outside of ayour final answer without needing to add a new final state. Why add one or two iterations to the outside of a
triply-nested loop if you can avoid it?triply-nested loop if you can avoid it?

Anyway, what we have proved is:Anyway, what we have proved is:

Theorem.Theorem. Given any DFA, NFA, or GNFA Given any DFA, NFA, or GNFA , we can calculate a regular expression , we can calculate a regular expression (Greek rho) such (Greek rho) such
thatthat

GG 𝜌𝜌

..LL 𝜌𝜌 == L L GG(()) (())

This also completes the proof of the final part of Kleene's Theorem.This also completes the proof of the final part of Kleene's Theorem.

0101

GG00
ss

Then Then but this is not all strings. The reason is but this is not all strings. The reason is LL GG == 0101((00)) (())**

that that was really abbreviating the NFA shown below, which was really abbreviating the NFA shown below, whichGG00

can "crash" on can "crash" on at its start state and on at its start state and on at state at state ::11 00 tt

G'G'00
ss tt

00

11

𝜌𝜌
ss ff

Example---revisiting a previous NFA:Example---revisiting a previous NFA:

We want to eliminate state 2. If we were using the code approach, we could re-number it as state 3. ButWe want to eliminate state 2. If we were using the code approach, we could re-number it as state 3. But
we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations of them.we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations of them.
 Here we have: Here we have:

In: 1 (on In: 1 (on) and) and (on (on).).𝜖𝜖 33 bb

Out: only to Out: only to (on (on).).33 aa

Update: Update: and and TT 11,, 33(()) TT 33,, 33 ..(())

TT 11,, 33 == T T 11,, 33 ++ T T 11,, 22 TT 22,, 22 TT 22,, 33(())newnew (())oldold (()) (())** (())

 == b b ++ 𝜖 𝜖 ⋅⋅ 𝜖𝜖 ⋅⋅ a a == b b ++ a a..

TT 33,, 33 == T T 33,, 33 ++ T T 33,, 22 TT 22,, 22 TT 22,, 33(())newnew (())oldold (()) (())** (())

 == ∅ ∅ ++ b b ⋅⋅ 𝜖𝜖 ⋅⋅ a a == ba ba..

The new GNFA isThe new GNFA is

[If time permits, some philosophical discussion will follow.][If time permits, some philosophical discussion will follow.]

𝛽 𝛽 == b b ++ aa

𝜂 𝜂 == a a

𝛼 𝛼 == a a 𝛾 𝛾 == ba ba

11 33GG11

LL GG == L L == 𝛼 𝛼 ++ 𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾 ((11)) sfsf
**

**
**

== a a ++ bb ++ aa baba aa bb ++ aa baba ..(((())(())**
**
(())(())**

