
CSE491/596  Lecture Wed. 9/16/20     Regular and Nonregular LanguagesCSE491/596  Lecture Wed. 9/16/20     Regular and Nonregular Languages
  
[cover FA-to-regexp example at end of previous lecture notes][cover FA-to-regexp example at end of previous lecture notes]
[Generally, things in square brackets are either skims of things I did in the lecture or extra comments[Generally, things in square brackets are either skims of things I did in the lecture or extra comments  
afterward.]afterward.]
  
Given a DFA Given a DFA , let us use the notation , let us use the notation the state the state  that  that  is in after is in after  M M ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( )) 𝛿𝛿 pp,, xx   ==   **(( )) qq MM

processing processing  from state  from state .  We saw this as .  We saw this as  for the DFA in the NFA-to-DFA proof.  Note that for the DFA in the NFA-to-DFA proof.  Note thatxx pp 𝛥𝛥
**

  
,,x x ∈∈  L  L ⟺⟺  𝛿 𝛿 ss,, xx   ∈∈  F F**(( ))

where where , so, soL L ==  L L MM(( ))

,,x x ∉∉  L  L ⟺⟺  𝛿 𝛿 ss,, xx   ∉∉  F F**(( ))

which is the same as writingwhich is the same as writing

x x ∈∈     ⟺⟺  𝛿 𝛿 ss,, xx   ∈∈   ..LL **(( )) FF

The upshot is that the DFA The upshot is that the DFA  gives  gives .  This trick of complementing.  This trick of complementing  M' M' ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF LL M'M'   ==   (( )) LL

accepting and nonaccepting states does not, however, work for a general NFA.  For example, if youaccepting and nonaccepting states does not, however, work for a general NFA.  For example, if you  
try this on the NFAs try this on the NFAs  given for the languages  given for the languages  of binary strings whose  of binary strings whose th bit from the end is a 1,th bit from the end is a 1,  NNkk LLkk kk
then the new machine has an accepting loop at the start state on both 0 and 1 and so accepts everythen the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every  
string, not just those in the complement of string, not just those in the complement of .  [I spent some time showing this from the picture of .  [I spent some time showing this from the picture of   LLkk NNkk

in the previous lecture.]  But thanks to Kleene's Theorem, being able to do it for DFAs is enough toin the previous lecture.]  But thanks to Kleene's Theorem, being able to do it for DFAs is enough to  
prove:prove:
  
Theorem 1Theorem 1: The complement of a regular language is always regular.  : The complement of a regular language is always regular.  ☒☒
  
  
Now suppose we have two DFAs Now suppose we have two DFAs  and  and  (note that (note that  MM   ==   QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FF11 (( 11 11 11 11)) MM   ==   QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FF22 (( 22 22 22 22))

 is the same).  Let  is the same).  Let  and  and .  Then let .  Then let  be any binary operation on sets, be any binary operation on sets,  𝛴𝛴 LL   ==  L L MM11 (( 11)) LL   ==  L L MM22 (( 22)) opop

such as such as  or  or  but note also difference  but note also difference  and  and symmetric differencesymmetric difference∪∪ ∩∩ LL   ⧵⧵  L L11 22

  
,,LL   △△  L L   ==   LL   ⧵⧵  L L   ∪∪   LL   ⧵⧵  L L   ==   LL   ∪∪  L L   ⧵⧵   LL   ∩∩  L L11 22 (( 11 22)) (( 22 11)) (( 11 22)) (( 11 22))

  
whose corresponding Boolean operation whose corresponding Boolean operation  is XOR, which is sometimes written  is XOR, which is sometimes written .  Then we have:.  Then we have:opop'' ⊕⊕

  
  x x ∈∈  L L   opop11 LL   ⟺⟺   x x ∈∈  L L   opop' x ' x ∈∈  L L   ⟺⟺   𝛿𝛿 ss ,, xx   ∈∈  F F   opop' ' 𝛿𝛿 ss ,, xx   ∈∈  F F22 (( 11 22)) **

11(( 11 )) 11
**
22(( 22 )) 22

When When  = AND, this is  = AND, this is , , ..op'op' ⟺⟺     ((𝛿𝛿 ss ,, xx**
11(( 11 )) 𝛿𝛿 ss ,, xx   ∈∈  F F   ××  F F**

22(( 22 )))) 11 22

This means that This means that ifif we define we define  
  

 with  with  and  and ,,  MM   ==   QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FF33 (( 33 33 33 33)) QQ   ==  Q Q   ××  Q Q33 11 22 ss   ==   ss ,, ss33 (( 11 22))

  
and define   and define   𝛿𝛿 qq ,, qq ,,  c c   ==   𝛿𝛿 qq,, cc ,,  𝛿 𝛿 qq,, cc ,,33(((( 11 22)) )) (( 11(( )) 22(( ))))

  

  



  
and use and use ,,  FF   ==  F F   ××  F F33 11 22

  
thenthen  ..    LL MM   ==  L L MM   ∩∩  L L MM(( 33)) (( 11)) (( 22))

  
  
We can use this We can use this Cartesian product constructionCartesian product construction for the other Boolean operations  for the other Boolean operations .  We just have.  We just have  op'op'

to be more careful about how we define the final states.  The general definition isto be more careful about how we define the final states.  The general definition is
  

..FF   ==   rr ,, rr   ::  r r   ∈∈  F F   op'op' r r   ∈∈  F F33 {{(( 11 22)) 11 11 22 22 }}

  
Then Then .  Thus we have shown the following theorem..  Thus we have shown the following theorem.LL MM   ==  L L MM  op L op L MM(( 33)) (( 11)) (( 22))

  
Theorem 2Theorem 2: The class of regular languages is closed under all Boolean operations.: The class of regular languages is closed under all Boolean operations.
  
Actually, we already could have said this right after Theorem 1 about complements.  This is becauseActually, we already could have said this right after Theorem 1 about complements.  This is because  
OR is a native regular expression operation.  OR and negation (OR is a native regular expression operation.  OR and negation (  form a complete set of logic form a complete set of logic  ¬¬))

operations.  For instance, operations.  For instance,   by DeMorgan's laws.  by DeMorgan's laws.a a ANDAND b  b ≡≡   ¬¬(( ¬¬aa   OROR  ¬¬ b b(( )) (( ))))

  
  
  
Summary of the philosophical discussion that ended the lectureSummary of the philosophical discussion that ended the lecture: Suppose : Suppose  and  and  are the two are the two  LL11 LL22

regular languages you want to combine.  If what you're given are DFAs regular languages you want to combine.  If what you're given are DFAs  and  and  for them ("for for them ("for  MM11 MM22

them" means them" means  and  and ), then the combination ), then the combination can be quickly put togethercan be quickly put together  LL MM   == LL(( 11)) 11 LL MM   ==  L L(( 22)) 22 MM   33

as above, and it doesn't matter what the operation is.  But if you are originally given NFAs as above, and it doesn't matter what the operation is.  But if you are originally given NFAs  and  and ,,  NN11 NN22

it is not so easy.  Well, it is easy for union/OR if you only need an NFA it is not so easy.  Well, it is easy for union/OR if you only need an NFA : just join : just join  and  and  in in  NN33 NN11 NN22

parallel with parallel with -arcs from a new start state as we saw in the NFA-to-regexp proof.  For-arcs from a new start state as we saw in the NFA-to-regexp proof.  For  𝜖𝜖

intersection/AND, hmmm....[Is there a way to make the Cartesian product construction idea workintersection/AND, hmmm....[Is there a way to make the Cartesian product construction idea work  
directly on two NFAs?  That might be a good small-group discussion topic.]   And if the operation isdirectly on two NFAs?  That might be a good small-group discussion topic.]   And if the operation is  
difference or symmetric difference---or just simply complement like on the homework problem 3---difference or symmetric difference---or just simply complement like on the homework problem 3---
there seems to be no way there seems to be no way in general in general without first converting the NFAs to DFAs so you can apply thewithout first converting the NFAs to DFAs so you can apply the  
Cartesian product idea.  Maybe in particular cases there are shortcuts, but in this course weCartesian product idea.  Maybe in particular cases there are shortcuts, but in this course we  
emphasize geenral cases.emphasize geenral cases.
  
This all highlights a curious asymmetry between OR and AND.  The former is a native regularThis all highlights a curious asymmetry between OR and AND.  The former is a native regular  
expression operation.  We at least a philosophical analogy to parallel circuits in Kirchoff's Laws.expression operation.  We at least a philosophical analogy to parallel circuits in Kirchoff's Laws.    
There does not, however, seem to be an electrical counterpart to AND.  Even if you can do CartesianThere does not, however, seem to be an electrical counterpart to AND.  Even if you can do Cartesian  
product on two NFAs to handle AND, the new NFA is quadratically bigger than the two given NFAs.product on two NFAs to handle AND, the new NFA is quadratically bigger than the two given NFAs.    
This may be more than analogy---it may be responsible for differences in cases where our brains findThis may be more than analogy---it may be responsible for differences in cases where our brains find  
disjunctions easier to think about than conjunctions.  [The difference actually really comes out whendisjunctions easier to think about than conjunctions.  [The difference actually really comes out when  
we contrast we contrast disjunctiive normal form, disjunctiive normal form, which means OR-of-ANDs, with which means OR-of-ANDs, with conjunctive normal formconjunctive normal form, which, which  
is AND-of-ORs.  We will hit this when doing NP-completeness.]is AND-of-ORs.  We will hit this when doing NP-completeness.]

  

  



  
  
  

  

  


