
CSE491/596 Lecture Wed. 9/16/20 Regular and Nonregular LanguagesCSE491/596 Lecture Wed. 9/16/20 Regular and Nonregular Languages

[cover FA-to-regexp example at end of previous lecture notes][cover FA-to-regexp example at end of previous lecture notes]
[Generally, things in square brackets are either skims of things I did in the lecture or extra comments[Generally, things in square brackets are either skims of things I did in the lecture or extra comments
afterward.]afterward.]

Given a DFA Given a DFA , let us use the notation , let us use the notation the state the state that that is in after is in after M M == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(()) 𝛿𝛿 pp,, xx == **(()) qq MM

processing processing from state from state . We saw this as . We saw this as for the DFA in the NFA-to-DFA proof. Note that for the DFA in the NFA-to-DFA proof. Note thatxx pp 𝛥𝛥
**

,,x x ∈∈ L L ⟺⟺ 𝛿 𝛿 ss,, xx ∈∈ F F**(())

where where , so, soL L == L L MM(())

,,x x ∉∉ L L ⟺⟺ 𝛿 𝛿 ss,, xx ∉∉ F F**(())

which is the same as writingwhich is the same as writing

x x ∈∈ ⟺⟺ 𝛿 𝛿 ss,, xx ∈∈ ..LL **(()) FF

The upshot is that the DFA The upshot is that the DFA gives gives . This trick of complementing. This trick of complementing M' M' == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF LL M'M' == (()) LL

accepting and nonaccepting states does not, however, work for a general NFA. For example, if youaccepting and nonaccepting states does not, however, work for a general NFA. For example, if you
try this on the NFAs try this on the NFAs given for the languages given for the languages of binary strings whose of binary strings whose th bit from the end is a 1,th bit from the end is a 1, NNkk LLkk kk
then the new machine has an accepting loop at the start state on both 0 and 1 and so accepts everythen the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every
string, not just those in the complement of string, not just those in the complement of . [I spent some time showing this from the picture of . [I spent some time showing this from the picture of LLkk NNkk

in the previous lecture.] But thanks to Kleene's Theorem, being able to do it for DFAs is enough toin the previous lecture.] But thanks to Kleene's Theorem, being able to do it for DFAs is enough to
prove:prove:

Theorem 1Theorem 1: The complement of a regular language is always regular. : The complement of a regular language is always regular. ☒☒

Now suppose we have two DFAs Now suppose we have two DFAs and and (note that (note that MM == QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FF11 ((11 11 11 11)) MM == QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FF22 ((22 22 22 22))

 is the same). Let is the same). Let and and . Then let . Then let be any binary operation on sets, be any binary operation on sets, 𝛴𝛴 LL == L L MM11 ((11)) LL == L L MM22 ((22)) opop

such as such as or or but note also difference but note also difference and and symmetric differencesymmetric difference∪∪ ∩∩ LL ⧵⧵ L L11 22

,,LL △△ L L == LL ⧵⧵ L L ∪∪ LL ⧵⧵ L L == LL ∪∪ L L ⧵⧵ LL ∩∩ L L11 22 ((11 22)) ((22 11)) ((11 22)) ((11 22))

whose corresponding Boolean operation whose corresponding Boolean operation is XOR, which is sometimes written is XOR, which is sometimes written . Then we have:. Then we have:opop'' ⊕⊕

 x x ∈∈ L L opop11 LL ⟺⟺ x x ∈∈ L L opop' x ' x ∈∈ L L ⟺⟺ 𝛿𝛿 ss ,, xx ∈∈ F F opop' ' 𝛿𝛿 ss ,, xx ∈∈ F F22 ((11 22)) **

11((11)) 11
**
22((22)) 22

When When = AND, this is = AND, this is , , ..op'op' ⟺⟺ ((𝛿𝛿 ss ,, xx**
11((11)) 𝛿𝛿 ss ,, xx ∈∈ F F ×× F F**

22((22)))) 11 22

This means that This means that ifif we define we define

 with with and and ,, MM == QQ ,,𝛴𝛴,, 𝛿𝛿 ,, ss ,, FF33 ((33 33 33 33)) QQ == Q Q ×× Q Q33 11 22 ss == ss ,, ss33 ((11 22))

and define and define 𝛿𝛿 qq ,, qq ,, c c == 𝛿𝛿 qq,, cc ,, 𝛿 𝛿 qq,, cc ,,33((((11 22)))) ((11(()) 22(())))

and use and use ,, FF == F F ×× F F33 11 22

thenthen .. LL MM == L L MM ∩∩ L L MM((33)) ((11)) ((22))

We can use this We can use this Cartesian product constructionCartesian product construction for the other Boolean operations for the other Boolean operations . We just have. We just have op'op'

to be more careful about how we define the final states. The general definition isto be more careful about how we define the final states. The general definition is

..FF == rr ,, rr :: r r ∈∈ F F op'op' r r ∈∈ F F33 {{((11 22)) 11 11 22 22 }}

Then Then . Thus we have shown the following theorem.. Thus we have shown the following theorem.LL MM == L L MM op L op L MM((33)) ((11)) ((22))

Theorem 2Theorem 2: The class of regular languages is closed under all Boolean operations.: The class of regular languages is closed under all Boolean operations.

Actually, we already could have said this right after Theorem 1 about complements. This is becauseActually, we already could have said this right after Theorem 1 about complements. This is because
OR is a native regular expression operation. OR and negation (OR is a native regular expression operation. OR and negation (form a complete set of logic form a complete set of logic ¬¬))

operations. For instance, operations. For instance, by DeMorgan's laws. by DeMorgan's laws.a a ANDAND b b ≡≡ ¬¬((¬¬aa OROR ¬¬ b b(()) (())))

Summary of the philosophical discussion that ended the lectureSummary of the philosophical discussion that ended the lecture: Suppose : Suppose and and are the two are the two LL11 LL22

regular languages you want to combine. If what you're given are DFAs regular languages you want to combine. If what you're given are DFAs and and for them ("for for them ("for MM11 MM22

them" means them" means and and), then the combination), then the combination can be quickly put togethercan be quickly put together LL MM == LL((11)) 11 LL MM == L L((22)) 22 MM 33

as above, and it doesn't matter what the operation is. But if you are originally given NFAs as above, and it doesn't matter what the operation is. But if you are originally given NFAs and and ,, NN11 NN22

it is not so easy. Well, it is easy for union/OR if you only need an NFA it is not so easy. Well, it is easy for union/OR if you only need an NFA : just join : just join and and in in NN33 NN11 NN22

parallel with parallel with -arcs from a new start state as we saw in the NFA-to-regexp proof. For-arcs from a new start state as we saw in the NFA-to-regexp proof. For 𝜖𝜖

intersection/AND, hmmm....[Is there a way to make the Cartesian product construction idea workintersection/AND, hmmm....[Is there a way to make the Cartesian product construction idea work
directly on two NFAs? That might be a good small-group discussion topic.] And if the operation isdirectly on two NFAs? That might be a good small-group discussion topic.] And if the operation is
difference or symmetric difference---or just simply complement like on the homework problem 3---difference or symmetric difference---or just simply complement like on the homework problem 3---
there seems to be no way there seems to be no way in general in general without first converting the NFAs to DFAs so you can apply thewithout first converting the NFAs to DFAs so you can apply the
Cartesian product idea. Maybe in particular cases there are shortcuts, but in this course weCartesian product idea. Maybe in particular cases there are shortcuts, but in this course we
emphasize geenral cases.emphasize geenral cases.

This all highlights a curious asymmetry between OR and AND. The former is a native regularThis all highlights a curious asymmetry between OR and AND. The former is a native regular
expression operation. We at least a philosophical analogy to parallel circuits in Kirchoff's Laws.expression operation. We at least a philosophical analogy to parallel circuits in Kirchoff's Laws.
There does not, however, seem to be an electrical counterpart to AND. Even if you can do CartesianThere does not, however, seem to be an electrical counterpart to AND. Even if you can do Cartesian
product on two NFAs to handle AND, the new NFA is quadratically bigger than the two given NFAs.product on two NFAs to handle AND, the new NFA is quadratically bigger than the two given NFAs.
This may be more than analogy---it may be responsible for differences in cases where our brains findThis may be more than analogy---it may be responsible for differences in cases where our brains find
disjunctions easier to think about than conjunctions. [The difference actually really comes out whendisjunctions easier to think about than conjunctions. [The difference actually really comes out when
we contrast we contrast disjunctiive normal form, disjunctiive normal form, which means OR-of-ANDs, with which means OR-of-ANDs, with conjunctive normal formconjunctive normal form, which, which
is AND-of-ORs. We will hit this when doing NP-completeness.]is AND-of-ORs. We will hit this when doing NP-completeness.]

