
CSE491/596 Monday Sept. 20, 2021: Regular and Non-Regular Languages

Theorem 1: The complement of a regular language is always regular. ☒

I will write the complement of a regular language as or as . The idea is that given a DFA A A ∼ A

 such that , we can get such that by M = Q,𝛴, 𝛿, s, F() L M = A() M' = Q',𝛴, 𝛿', s', F' () L M' =() A

taking , , , but . Then for all ,Q' = Q s' = s 𝛿' = 𝛿 F' = Q ⧵ F x ∈ 𝛴*

.x ∈ ⟺ x ∉ A ⟺ x ∉ L M ⟺ 𝛿 s, x ∉ F ⟺ 𝛿 s, x ∈ F' ⟺ x ∈ L M'A () *() *() ()

Thus Here is the extended transition function from to such that L M' = .() A 𝛿* Q × 𝛴* Q

the unique state such that can process from to . Note that this is only valid in a 𝛿 q, y =*() r M y q r
DFA. The whole idea of switching accepting and rejecting states does not generally work to
complement an NFA (nor a GNFA).

Now suppose we have two DFAs and (note that M = Q ,𝛴, 𝛿 , s , F1 (1 1 1 1) M = Q ,𝛴, 𝛿 , s , F2 (2 2 2 2)

 is the same). Let and . Then let be any binary operation on sets, 𝛴 L = L M1 (1) L = L M2 (2) op

such as or but note also difference and symmetric difference∪ ∩ L ⧵ L1 2

,L △ L = L ⧵ L ∪ L ⧵ L = L ∪ L ⧵ L ∩ L1 2 (1 2) (2 1) (1 2) (1 2)

whose corresponding Boolean operation is XOR, which is sometimes written . Then we have:op' ⊕

 x ∈ L op1 L ⟺ x ∈ L op' x ∈ L ⟺ 𝛿 s , x ∈ F op' 𝛿 s , x ∈ F2 (1 2) *

1(1) 1
*
2(2) 2

When = AND, this is , .op' ⟺ (𝛿 s , x*
1(1) 𝛿 s , x ∈ F × F*

2(2)) 1 2

This means that if we define

 with and , M = Q ,𝛴, 𝛿 , s , F3 (3 3 3 3) Q = Q × Q3 1 2 s = s , s3 (1 2)

and define 𝛿 q , q , c = 𝛿 q, c , 𝛿 q, c ,3((1 2)) (1() 2())

and use , F = F × F3 1 2

then . L M = L M ∩ L M(3) (1) (2)

We can use this Cartesian product construction for the other Boolean operations . We just have op'

to be more careful about how we define the final states. The general definition is

.F = r , r : r ∈ F op' r ∈ F3 {(1 2) 1 1 2 2 }

Then . Thus we have shown the following theorem.L M = L M op L M(3) (1) (2)

Theorem 2: The class of regular languages is closed under all Boolean operations.

Actually, we already could have said this right after Theorem 1 about complements. This is because
OR is a native regular expression operation. OR and negation (form a complete set of logic ¬)

operations. For instance, by DeMorgan's laws.a AND b ≡ ¬(¬a OR ¬ b() ())

The Myhill-Nerode Relation

Given a DFA and two strings , suppose and both give M = Q,𝛴, 𝛿, s, F() x, y ∈ 𝛴* 𝛿 s, x*() 𝛿 s, y*()

the same state . Then for any further string , the computations on the strings and go q z ∈ 𝛴* xz yz

through the same states after . In particular, they end at the same state .q r

• If , then and , where .r ∈ F xz ∈ L yz ∈ L L = L M()

• If , then and r ∉ F xz ∉ L yz ∉ L.

• Either way, , for all .L xz = L yz() () z

Suppose, on the other hand, we have strings for which there exists a string such thatx, y z

.L xz ≠ L yz() ()

Then cannot process and to the same state. Moreover, this goes for any DFA such that M x y M

. In particular, every such DFA must at least have two states.L M = L()

Now let us build some definitions around these ideas. Given any language (not necessarily regular) L

and strings "over" the alphabet that is "over", define:x, y 𝛴 L

• and are -equivalent, written , if for all , .x y L x ∼ yL z ∈ 𝛴* L xz = L yz() ()

• and are distinctive for , written , if there exists s.t. .x y L x ≁ yL z ∈ 𝛴* L xz ≠ L yz() ()

Lemma 1. The relation is an equivalence relation.∼ L

Proof: We need to show that it is

• Reflexive: is obvious.x ∼ xL

• Symmetric: indeed, immediately means the same as .y ∼ xL x ∼ yL

• Transitive: Suppose and . This means:w ∼ xL x ∼ yL

– for all , andv ∈ 𝛴* L wv = L xv() ()

– for all , .z ∈ 𝛴* L xz = L yz() ()

Because and range over the same span of strings, it follows thatv z

– for all , and .z ∈ 𝛴* L wz = L xz() () L xz = L yz() ()

Hence we get:
– for all , .z ∈ 𝛴* L wz = L yz() ()

So . w ∼ yL

This ends the proof. ☒

Any equivalence relation on a set such as partitions that set into disjoint equivalence classes. So 𝛴*

 is the same as saying and belong to different equivalence classes. [I intended to give an x ≁ yL x y

example but skipped it after the initial loss of time: Start with the language of strings having an even E

number of 1s. Then the relation has exactly two equivalence classes: one for an even number of ∼ E

1s, the other for odd. Now if you make be the language where the number of 1s is a multiple of , E3 3

you get 3 equivalence classes. And so on...]

Logic of the Myhill-Nerode Theorem

Now say that a set of strings is Pairwise Distinctive for if all of its strings belong to separate S L

equivalence classes under the relation . Other names we will use are "distinctive set" and "PD set" ∼ L

for . This is the same as saying:L

• for all , , there exists such that .x, y ∈ S x ≠ y z ∈ 𝛴* L xz ≠ L yz() ()

Thus we can re-state something we said above as:

Lemma 2. If has a PD set of size 2, then any DFA such that must process the two L S M L M = L ()

strings in to different states, so must have at least 2 states.S M

Note: " has" does not mean must be a subset of , it just means "has by association." Now we can L S L
take this logic further:

Lemma . If has a PD set of size , then any DFA such that must process the k L S k M L M = L () k

strings in to different states, so must have at least states.S M k

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have
a DFA with or fewer states such that . Then there must be (at least) two strings in M k- 1 L M = L ()

 that processes to the same state. This follows by the Pigeonhole Principle. [In this lecture I S M
skipped over the story, but see this recent GLL blog post.]

Then explain why we get the infinite case:

https://rjlipton.wpcomstaging.com/2021/02/15/pigeonhole-principle/

Lemma If has a PD set of size , then any DFA such that must process the ∞. L S ∞ M L M = L ()

strings in to different states, so must have at least states...but then is not a finite automaton. S M ∞ M

So is not accepted by any finite automaton...which means is not a regular language. L L ☒

Myhill-Nerode Theorem, first half: If has an infinite PD set, then is not regular.L L

Example: . . Let any , L = a b : n ≥ 0n n 𝛴 = a, b{ } S = a : n ≥ 0 = a .n * x, y ∈ S

, be given. Then there are different numbers and such that and . Take x ≠ y i j x = ai y = aj

. Then , but , because . Thus . Thus z = bi xz = a b ∈ Li i yz = a b ∉ Lj i i ≠ j L xz ≠ L yz() ()

for all with , there exists such that . Thus is PD for . Since is x, y ∈ S x ≠ y z L xz ≠ L yz() () S L S

infinite, is not regular, by MNT. L ☒

[I finished by drawing a connection from this to the idea of playing the spears-and-dragons game when
you can save any number of spears. In the basic case where you can save at most 1 spear the DFA
has 3 states, and these are mandated because is a PD set of size 3. In particular, even S = 𝜖, $,D{ }

though both and are strings in the language of the 1-spear game, they are distinctive x = 𝜖 y = $ L1

for because kills you in the former case (i.e.,) but you stay alive in L1 z = D xz = 𝜖D = D ∉ L1

the latter case (i.e.,). If you can save up to 2 spears, then are three distinctive yz = $D ∈ L1 𝜖, $, $

strings (plus to make a fourth). Well, if you can save unlimited spears, then D

becomes an infinite PD set by similar logic to the example. So the S = 𝜖, $, $, $$, … ∞ { } a bn n

most liberal form of the game gives no longer a regular language. The next lecture will pick up from
here (minus the note at top).]

https://cse.buffalo.edu/~regan/cse491596/CSE491596lect092120.pdf

