CSE491/596 Monday Sept. 20, 2021: Regular and Non-Regular Languages

Theorem 1: The complement of a regular language is always regular.

I will write the complement of a regular language A as \widetilde{A} or as $\sim A$. The idea is that given a DFA $M = (Q, \Sigma, \delta, s, F)$ such that L(M) = A, we can get $M' = (Q', \Sigma, \delta', s', F')$ such that $L(M') = \widetilde{A}$ by taking Q' = Q, s' = s, $\delta' = \delta$, but $F' = Q \setminus F$. Then for all $x \in \Sigma^*$,

$$x\in \widetilde{A} \iff x\notin A \iff x\notin L(M) \iff \delta^*(s,x)\notin F \iff \delta^*(s,x)\in F' \iff x\in L(M')\,.$$

Thus L(M') = A. Here δ^* is the **extended transition function** from $Q \times \Sigma^*$ to Q such that $\delta^*(q, y) =$ the unique state r such that M can process y from q to r. Note that this is only valid in a DFA. The whole idea of switching accepting and rejecting states does not generally work to complement an NFA (nor a GNFA).

Now suppose we have two DFAs $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ (note that Σ is the same). Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$. Then let *op* be any binary operation on sets, such as \cup or \cap but note also difference $L_1 \setminus L_2$ and symmetric difference

$$L_1 riangle L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1) = (L_1 \cup L_2) \setminus (L_1 \cap L_2)$$
,

whose corresponding Boolean operation op' is XOR, which is sometimes written \oplus . Then we have:

 $x \in L_1 \text{ op } L_2 \iff (x \in L_1 \text{ op' } x \in L_2) \iff (\delta_1^*(s_1, x) \in F_1) \text{ op' } (\delta_2^*(s_2, x) \in F_2)$ When op' = AND, this is $\iff (\delta_1^*(s_1, x), \delta_2^*(s_2, x)) \in F_1 \times F_2$. This means that if we define

$$M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$$
 with $Q_3 = Q_1 \times Q_2$ and $s_3 = (s_1, s_2)$,

and define $\delta_3((q_1, q_2), c) = (\delta_1(q, c), \delta_2(q, c)),$

and use $F_3 = F_1 \times F_2$,

then $L(M_3) = L(M_1) \cap L(M_2)$.

We can use this **Cartesian product construction** for the other Boolean operations op'. We just have to be more careful about how we define the final states. The general definition is

$$F_3 = \{(r_1, r_2) : r_1 \in F_1 \text{ op' } r_2 \in F_2\}$$

Then $L(M_3) = L(M_1)$ op $L(M_2)$. Thus we have shown the following theorem.

Theorem 2: The class of regular languages is closed under all Boolean operations.

Actually, we already could have said this right after Theorem 1 about complements. This is because OR is a native regular expression operation. OR and negation (\neg) form a complete set of logic operations. For instance, $a \text{ AND } b \equiv \neg((\neg a) \text{ OR } (\neg b))$ by DeMorgan's laws.

The Myhill-Nerode Relation

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ and two strings $x, y \in \Sigma^*$, suppose $\delta^*(s, x)$ and $\delta^*(s, y)$ both give the same state q. Then for any further string $z \in \Sigma^*$, the computations on the strings xz and yz go through the same states after q. In particular, they end at the same state r.

- If $r \in F$, then $xz \in L$ and $yz \in L$, where L = L(M).
- If $r \notin F$, then $xz \notin L$ and $yz \notin L$.
- Either way, L(xz) = L(yz), for all z.

Suppose, on the other hand, we have strings x, y for which there exists a string z such that

 $L(xz) \neq L(yz).$

Then *M* cannot process *x* and *y* to the same state. Moreover, this goes for *any* DFA *M* such that L(M) = L. In particular, every such DFA must at least *have* two states.

Now let us build some definitions around these ideas. Given any language L (not necessarily regular) and strings x, y "over" the alphabet Σ that L is "over", define:

- x and y are *L*-equivalent, written $x \sim L y$, if for all $z \in \Sigma^*$, L(xz) = L(yz).
- x and y are distinctive for L, written $x \neq L y$, if there exists $z \in \Sigma^*$ s.t. $L(xz) \neq L(yz)$.

Lemma 1. The relation \sim_L is an equivalence relation.

Proof: We need to show that it is

- Reflexive: $x \sim L x$ is obvious.
- Symmetric: indeed, $y \sim L x$ immediately means the same as $x \sim L y$.
- Transitive: Suppose $w \sim L x$ and $x \sim L y$. This means:

```
- for all v \in \Sigma^*, L(wv) = L(xv) and
```

- for all
$$z \in \Sigma^*$$
, $L(xz) = L(yz)$.

Because v and z range over the same span of strings, it follows that - for all $z \in \Sigma^*$, L(wz) = L(xz) and L(xz) = L(yz). Hence we get: - for all $z \in \Sigma^*$, L(wz) = L(yz). So $w \sim L y$.

This ends the proof. \square

Any equivalence relation on a set such as Σ^* partitions that set into disjoint *equivalence classes*. So $x \nleftrightarrow_L y$ is the same as saying x and y belong to different equivalence classes. [I intended to give an example but skipped it after the initial loss of time: Start with the language E of strings having an even number of 1s. Then the relation \sim_E has exactly two equivalence classes: one for an even number of 1s, the other for odd. Now if you make E_3 be the language where the number of 1s is a multiple of 3, you get 3 equivalence classes. And so on...]

Logic of the Myhill-Nerode Theorem

Now say that a set *S* of strings is *Pairwise Distinctive for L* if all of its strings belong to separate equivalence classes under the relation \sim_L . Other names we will use are "distinctive set" and "PD set" for *L*. This is the same as saying:

• for all $x, y \in S$, $x \neq y$, there exists $z \in \Sigma^*$ such that $L(xz) \neq L(yz)$.

Thus we can re-state something we said above as:

Lemma 2. If *L* has a PD set *S* of size 2, then any DFA *M* such that L(M) = L must process the two strings in *S* to different states, so *M* must have at least 2 states.

Note: "L has" does not mean S must be a subset of L, it just means "has by association." Now we can take this logic further:

Lemma k. If L has a PD set S of size k, then any DFA M such that L(M) = L must process the k strings in S to different states, so M must have at least k states.

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have a DFA M with k-1 or fewer states such that L(M) = L. Then there must be (at least) two strings in S that M processes to the same state. This follows by the **Pigeonhole Principle**. [In this lecture I skipped over the story, but see this recent <u>GLL blog post</u>.]

Then explain why we get the infinite case:

Lemma ∞ . If *L* has a PD set *S* of size ∞ , then any DFA *M* such that L(M) = L must process the strings in *S* to different states, so *M* must have at least ∞ states...but then *M* is not a *finite* automaton. So *L* is not accepted by any finite automaton...which means *L* is not a regular language.

Myhill-Nerode Theorem, first half: If *L* has an infinite PD set, then *L* is not regular.

Example: $L = \{a^n b^n : n \ge 0\}$. $\Sigma = \{a, b\}$. $S = \{a^n : n \ge 0\} = a^*$. Let any $x, y \in S$, $x \ne y$, be given. Then there are different numbers i and j such that $x = a^i$ and $y = a^j$. Take $z = b^i$. Then $xz = a^i b^i \in L$, but $yz = a^j b^i \notin L$, because $i \ne j$. Thus $L(xz) \ne L(yz)$. Thus for all $x, y \in S$ with $x \ne y$, there exists z such that $L(xz) \ne L(yz)$. Thus S is PD for L. Since S is infinite, L is not regular, by MNT.

[I finished by drawing a connection from this to the idea of playing the spears-and-dragons game when you can save any number of spears. In the basic case where you can save at most 1 spear the DFA has 3 states, and these are mandated because $S = \{\epsilon, \$, D\}$ is a PD set of size 3. In particular, even though both $x = \epsilon$ and y = \$ are strings in the language L_1 of the 1-spear game, they are distinctive for L_1 because z = D kills you in the former case (i.e., $xz = \epsilon D = D \notin L_1$) but you stay alive in the latter case (i.e., $yz = \$D \in L_1$). If you can save up to 2 spears, then ϵ , \$, \$ are three distinctive strings (plus D to make a fourth). Well, if you can save unlimited spears, then

 $S_{\infty} = \{\epsilon, \$, \$, \$\$, \ldots\}$ becomes an infinite PD set by similar logic to the $\{a^n b^n\}$ example. So the most liberal form of the game gives no longer a regular language. The next lecture will pick up from <u>here</u> (minus the note at top).]