CSE491/596 Monday Sept. 20, 2021: Regular and Non-Regular Languages

Theorem 1: The complement of a regular language is always regular.

| will write the complement of a regular language A as A oras ~ A. The idea is that given a DFA

M=(Q,%,0,s,F) suchthat L(M) = A, we canget M’ = (Q’, X,0’,s’, F’) such that L(M") = A by
taking Q" = Q,s" =5,8" =0,but F’ = O\ F. Thenforall x € X*,

YeA &= xX¢A =x¢LM) = O(5,x)¢F < 0'(s,x) e FF < xeLM).

Thus L(M’) = A. Here 0" is the extended transition function from Q X X* to Q such that

0*(g,y) = the unique state r such that M can process y from g to r. Note that this is only valid in a
DFA. The whole idea of switching accepting and rejecting states does not generally work to
complement an NFA (nor a GNFA).

Now suppose we have two DFAs M; = (Qq,%, 064,51, F;) and M, = (Q,, X, 6,,5,,F,) (note that
Xisthe same). LetL; = L(M;)and L, = L(M,). Then let op be any binary operation on sets,
such as U or N but note also difference L; \ L, and symmetric difference

Ly ALy = (Ly \ L) U (Ly \ Ly) = (L1 U Ly) \ (L1 N Ly),
whose corresponding Boolean operation op” is XOR, which is sometimes written @& . Then we have:

x €Lioply & (x € Liop'x € Ly) & (6i(s1,%) € Fy)op’ (65(52,%) € Fo)

When Op' = AND, thisis < (5;(51,3(7), (5;(52, X)) € F; X F,.
This means that if we define

Mz = (Qs, X, 03,83, F3) with Q3 = Q1 X Qy ands; = (s1,52),

and define  03((41,92), ¢) = (01(g,¢), 62(4,¢)),

anduse F3 = F; X F,,

then L(M3) = L(M7) N L(M,).

We can use this Cartesian product construction for the other Boolean operations op’. We just have
to be more careful about how we define the final states. The general definition is

F3 = {(1’1,1’2) 11 € Flop’rp_ € Fz}



Then L(M3) = L(M;) op L(M,). Thus we have shown the following theorem.
Theorem 2: The class of regular languages is closed under all Boolean operations.

Actually, we already could have said this right after Theorem 1 about complements. This is because
OR is a native regular expression operation. OR and negation (=) form a complete set of logic
operations. Forinstance,a AND b = —((—a) OR (= b)) by DeMorgan's laws.

The Myhill-Nerode Relation

GivenaDFAM = (Q, X, 6,s,F) and two strings x,y € X*, suppose 6*(s,x) and 6*(s, y) both give
the same state 4. Then for any further string z € X", the computations on the strings xz and yz go
through the same states after 4. In particular, they end at the same state 7.

« Ifr € F,thenxz € Landyz € L,whereL = L(M).
« Ifr ¢ F,thenxz ¢ Landyz ¢ L.
» Either way, , for all z.

Suppose, on the other hand, we have strings x, iy for which there exists a string z such that

Then M cannot process x and y to the same state. Moreover, this goes for any DFA M such that
L(M) = L. In particular, every such DFA must at least have two states.

Now let us build some definitions around these ideas. Given any language L (not necessarily regular)
and strings x, y "over" the alphabet X that L is "over", define:

« xand y are L-equivalent, written x ~ | y,ifforallz € X* L(xz) = L(yz).
+ x and y are distinctive for L, written x + | v, if there exists z € X* s.t. L(xz) # L(yz).

Lemma 1. The relation ~ ; is an equivalence relation.

Proof: We need to show that it is
* Reflexive: x ~ | x is obvious.
« Symmetric: indeed, y ~ ; x immediately means the same as x ~ | V.
* Transitive: Suppose w ~ ;| x andx ~ | . This means:
—forallv € X, L(wv) = L(xv) and
— forallz € X7, L(xz) = L(yz).



Because v and z range over the same span of strings, it follows that
— forallz € X, L(wz) = L(xz) and L(xz) = L(yz).
Hence we get:
- forallz € X, L(wz) = L(yz).
Sow ~ .
This ends the proof.

Any equivalence relation on a set such as X~ partitions that set into disjoint equivalence classes. So
x + 1 yis the same as saying x and y belong to different equivalence classes. [l intended to give an
example but skipped it after the initial loss of time: Start with the language E of strings having an even
number of 1s. Then the relation ~ g has exactly two equivalence classes: one for an even number of
1s, the other for odd. Now if you make E5 be the language where the number of 1s is a multiple of 3,
you get 3 equivalence classes. And so on...]

Logic of the Myhill-Nerode Theorem

Now say that a set S of strings is Pairwise Distinctive for L if all of its strings belong to separate
equivalence classes under the relation ~ ;. Other names we will use are "distinctive set" and "PD set"
for L. This is the same as saying:

« forallx,y € S,x # y,thereexistsz € X* suchthat L(xz) # L(yz).
Thus we can re-state something we said above as:

Lemma 2. If L has a PD set S of size 2, then any DFA M such that L(M) = L must process the two
strings in S to different states, so M must have at least 2 states.

Note: "L has" does not mean S must be a subset of L, it just means "has by association." Now we can
take this logic further:

Lemma k. If L has a PD set S of size k, then any DFA M such that L(M) = L must process the k
strings in S to different states, so M must have at least k states.

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have
a DFA M with k — 1 or fewer states such that L(M) = L . Then there must be (at least) two strings in
S that M processes to the same state. This follows by the Pigeonhole Principle. [In this lecture |
skipped over the story, but see this recent GLL blog_post.]

Then explain why we get the infinite case:


https://rjlipton.wpcomstaging.com/2021/02/15/pigeonhole-principle/

Lemma oo. If L has a PD set S of size co, then any DFA M such that L(M) = L must process the
strings in S to different states, so M must have at least co states...but then M is not a finite automaton.
So L is not accepted by any finite automaton...which means L. is not a regular language.

Myhill-Nerode Theorem, first half: If L. has an infinite PD set, then L is not regular.

Example: L = {a” b" :n > O}. X ={ab}. S = {a”: n > O} = a*. Letanyx,y € S,

x # Y, be given. Then there are different numbers i and j such that x = a’ andy = al. Take

z = b'. Thenxz = a'b’ € L,butyz = a/b' ¢ L,becausei # j. Thus L(xz) # L(yz). Thus
forallx,y € Swithx # y,there exists z such that L(xz) # L(yz). Thus Sis PD for L. Since S is
infinite, L is not regular, by MNT.

[l finished by drawing a connection from this to the idea of playing the spears-and-dragons game when
you can save any number of spears. In the basic case where you can save at most 1 spear the DFA
has 3 states, and these are mandated because S = {€,$, D} is a PD set of size 3. In particular, even
thoughbothx = eandy = $ are strings in the language L of the 1-spear game, they are distinctive
for [ because z = D kills you in the former case (i.e., xz = €D = D ¢ L) but you stay alive in
the latter case (i.e., yz = $D € L,). If you can save up to 2 spears, then €,$,$ are three distinctive
strings (plus D to make a fourth). Well, if you can save unlimited spears, then

Seo = {€,%$,%,%%, ...} becomes an infinite PD set by similar logic to the {a” b”} example. So the

most liberal form of the game gives no longer a regular language. The next lecture will pick up from
here (minus the note at top).]


https://cse.buffalo.edu/~regan/cse491596/CSE491596lect092120.pdf

