
CSE491/596 Monday Sept. 20, 2021: Regular and Non-Regular Languages
 
Theorem 1: The complement of a regular language is always regular.  ☒
 

I will write the complement of a regular language  as  or as .  The idea is that given a DFA A A ∼ A

 such that , we can get such that  by M = Q,𝛴, 𝛿, s, F( ) L M = A( ) M' = Q',𝛴, 𝛿', s', F'  ( ) L M' =( ) A

taking , , , but .  Then for all ,Q' = Q s' = s 𝛿' = 𝛿 F' = Q ⧵ F x ∈ 𝛴*

 

.x ∈  ⟺  x ∉ A ⟺ x ∉ L M  ⟺  𝛿 s, x ∉ F ⟺  𝛿 s, x ∈ F' ⟺  x ∈ L M'A ( ) *( ) *( ) ( )

 

Thus   Here  is the extended transition function from  to  such that L M'  =  .( ) A 𝛿* Q ×  𝛴* Q

the unique state  such that  can process  from  to .  Note that this is only valid in a 𝛿 q, y =*( ) r M y q r
DFA.  The whole idea of switching accepting and rejecting states does not generally work to 
complement an NFA (nor a GNFA).
 
Now suppose we have two DFAs  and  (note that M  =  Q ,𝛴, 𝛿 , s , F1 ( 1 1 1 1) M  =  Q ,𝛴, 𝛿 , s , F2 ( 2 2 2 2)

 is the same).  Let  and .  Then let  be any binary operation on sets, 𝛴 L  =  L M1 ( 1) L  =  L M2 ( 2) op

such as  or  but note also difference  and symmetric difference∪ ∩ L  ⧵  L1 2

 
,L  △  L  =  L  ⧵  L  ∪  L  ⧵  L  =  L  ∪  L  ⧵  L  ∩  L1 2 ( 1 2) ( 2 1) ( 1 2) ( 1 2)

 
whose corresponding Boolean operation  is XOR, which is sometimes written .  Then we have:op' ⊕

 
 x ∈  L  op1 L  ⟺  x ∈  L  op' x ∈  L  ⟺  𝛿 s , x  ∈  F  op' 𝛿 s , x  ∈  F2 ( 1 2) *

1( 1 ) 1
*
2( 2 ) 2

When  = AND, this is , .op' ⟺   (𝛿 s , x*
1( 1 ) 𝛿 s , x  ∈  F  ×  F*

2( 2 )) 1 2

This means that if we define 
 

 with  and , M  =  Q ,𝛴, 𝛿 , s , F3 ( 3 3 3 3) Q  =  Q  ×  Q3 1 2 s  =  s , s3 ( 1 2)

 
and define   𝛿 q , q ,  c  =  𝛿 q, c ,  𝛿 q, c ,3(( 1 2) ) ( 1( ) 2( ))

 
and use , F  =  F  ×  F3 1 2

 
then .  L M  =  L M  ∩  L M( 3) ( 1) ( 2)

 
 
We can use this Cartesian product construction for the other Boolean operations .  We just have op'

to be more careful about how we define the final states.  The general definition is
 

.F  =  r , r  :  r  ∈  F  op' r  ∈  F3 {( 1 2) 1 1 2 2 }

 

 



 
Then .  Thus we have shown the following theorem.L M  =  L M  op L M( 3) ( 1) ( 2)

 
Theorem 2: The class of regular languages is closed under all Boolean operations.
 
Actually, we already could have said this right after Theorem 1 about complements.  This is because 
OR is a native regular expression operation.  OR and negation (  form a complete set of logic ¬)

operations.  For instance,   by DeMorgan's laws.a AND b ≡  ¬( ¬a  OR ¬ b( ) ( ))

 
 
The Myhill-Nerode Relation
 
Given a DFA  and two strings , suppose  and  both give M =  Q,𝛴, 𝛿, s, F( ) x, y ∈  𝛴* 𝛿 s, x*( ) 𝛿 s, y*( )

the same state .  Then for any further string , the computations on the strings  and  go q z ∈  𝛴* xz yz

through the same states after .  In particular, they end at the same state .q r
 

• If , then  and , where .r ∈  F xz ∈  L yz ∈  L L =  L M( )

• If , then  and r ∉  F xz ∉  L yz ∉  L.

• Either way, , for all .L xz  =  L yz( ) ( ) z
 
Suppose, on the other hand, we have strings  for which there exists a string  such thatx, y z
 

.L xz  ≠  L yz( ) ( )

 
Then  cannot process  and  to the same state.  Moreover, this goes for any DFA  such that M x y M

.  In particular, every such DFA must at least have two states.L M  =  L( )

 
Now let us build some definitions around these ideas.  Given any language  (not necessarily regular) L

and strings  "over" the alphabet  that  is "over", define:x, y 𝛴 L
 

•  and  are -equivalent, written , if for all , .x y L x ∼  yL z ∈  𝛴* L xz  =  L yz( ) ( )

•  and  are distinctive for , written , if there exists  s.t. .x y L x ≁  yL z ∈  𝛴* L xz  ≠  L yz( ) ( )

 
Lemma 1. The relation  is an equivalence relation.∼ L

 
Proof: We need to show that it is

• Reflexive:  is obvious.x ∼  xL

• Symmetric: indeed,  immediately means the same as .y ∼  xL x ∼  yL

• Transitive: Suppose  and .  This means:w ∼  xL x ∼  yL

– for all ,  andv ∈  𝛴* L wv  =  L xv( ) ( )

– for all , .z ∈  𝛴* L xz  =  L yz( ) ( )

 

 



Because  and  range over the same span of strings, it follows thatv z

– for all ,  and .z ∈  𝛴* L wz  =  L xz( ) ( ) L xz  =  L yz( ) ( )

Hence we get:
– for all , .z ∈  𝛴* L wz  =  L yz( ) ( )

So .   w ∼  yL

This ends the proof.  ☒
 
Any equivalence relation on a set such as  partitions that set into disjoint equivalence classes.  So 𝛴*

 is the same as saying  and  belong to different equivalence classes.  [I intended to give an x ≁  yL x y

example but skipped it after the initial loss of time: Start with the language  of strings having an even E

number of 1s.  Then the relation  has exactly two equivalence classes: one for an even number of ∼ E

1s, the other for odd.  Now if you make  be the language where the number of 1s is a multiple of , E3 3

you get 3 equivalence classes.  And so on...]
 
 
Logic of the Myhill-Nerode Theorem
 
Now say that a set  of strings is Pairwise Distinctive for  if all of its strings belong to separate S L

equivalence classes under the relation .  Other names we will use are "distinctive set" and "PD set" ∼ L

for .  This is the same as saying:L
 

• for all , , there exists  such that .x, y ∈  S x ≠  y z ∈  𝛴* L xz  ≠  L yz( ) ( )
 
Thus we can re-state something we said above as:
 
Lemma 2. If  has a PD set  of size 2, then any DFA  such that must process the two L S M L M  =  L ( )

strings in  to different states, so  must have at least 2 states.S M
 
Note: "  has" does not mean  must be a subset of , it just means "has by association."  Now we can L S L
take this logic further:
 
Lemma . If  has a PD set  of size , then any DFA  such that  must process the  k L S k M L M  =  L ( ) k

strings in  to different states, so  must have at least  states.S M k
 
I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have 
a DFA  with  or fewer states such that .  Then there must be (at least) two strings in M k- 1 L M  =  L ( )

 that  processes to the same state.  This follows by the Pigeonhole Principle.  [In this lecture I S M
skipped over the story, but see this recent GLL blog post.]
 
Then explain why we get the infinite case:
 

 

 

https://rjlipton.wpcomstaging.com/2021/02/15/pigeonhole-principle/


Lemma  If  has a PD set  of size , then any DFA  such that  must process the ∞. L S ∞ M L M  =  L ( )

strings in  to different states, so  must have at least  states...but then  is not a finite automaton.  S M ∞ M

So  is not accepted by any finite automaton...which means  is not a regular language.  L L ☒
 
Myhill-Nerode Theorem, first half: If  has an infinite PD set, then   is not regular.L L
 

Example: .  .    Let any , L =  a  b  :  n ≥  0n n 𝛴 =  a, b{ } S =  a :  n ≥  0  =  a .n * x, y ∈  S

, be given.  Then there are different numbers  and  such that  and .  Take x ≠  y i j x =  ai y =  aj

.  Then , but , because .  Thus .  Thus z =  bi xz =  a b  ∈  Li i yz =  a  b  ∉  Lj i i ≠  j L xz  ≠  L yz( ) ( )

for all  with , there exists  such that .  Thus  is PD for .  Since  is x, y ∈  S x ≠  y z L xz  ≠  L yz( ) ( ) S L S 

infinite,  is not regular, by MNT.  L ☒
 
[I finished by drawing a connection from this to the idea of playing the spears-and-dragons game when 
you can save any number of spears.  In the basic case where you can save at most 1 spear the DFA 
has 3 states, and these are mandated because  is a PD set of size 3.  In particular, even S =  𝜖, $,D{ }

though both  and  are strings in the language  of the 1-spear game, they are distinctive x =  𝜖 y =  $ L1

for  because  kills you in the former case (i.e., ) but you stay alive in L1 z =  D xz =  𝜖D =  D ∉  L1

the latter case (i.e., ).  If you can save up to 2 spears, then  are three distinctive yz =  $D ∈  L1 𝜖, $, $

strings (plus  to make a fourth).  Well, if you can save unlimited spears, then D

becomes an infinite PD set by similar logic to the  example.  So the S  =  𝜖, $, $, $$, …  ∞ { } a  bn n

most liberal form of the game gives no longer a regular language.  The next lecture will pick up from 
here (minus the note at top).]
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