
CSE491/596 Lecture 9/22/23: Myhill-Nerode Theorem, continued
 
We pick up with more examples of the "proof script."
 

Example 3.  , where  means  reversed, e.g., L =  x ∈  a, b :  x  =  x{ }* R xR x

.  [What is ?]  That is,  is the language of strings that are abbab  =  babbaR
𝜖
R L

palindromes and has the standard name PAL.
 
Take __ __.  Clearly  is infinite.  S =  S

     Let any be given.  Then we can write __ __ andx, y ∈  S x ≠  y  ( ) x =   

     __ __ where ________ and .y =   m

          Take __ __.  z =   

               Then  because ___  butL xz  ≠ L yz( ) ( )  ∈  PAL

                which is not in PAL because  and the single  m ≠  n b

               prevents any other possible way of "parsing"  as a palindrome___.yz

Because are an arbitrary pair of strings in , this shows that  is PD for , and x, y S S L

since  is infinite, it follows that  is nonregular by the Myhill-Nerode Theorem.S L
 
We did not need the "wlog." provision this time---but you can always take it even if you 
don't need it.  We also could have started with  and made the  the first char S =  a* b

in .  Why did I put the  "up front" in ?  It is to emphasize its importance and help z b S
avoid a common mistake of forgetting it altogether.  The mistake (in this case---it pops 
up in others too) is to think that  is not a palindrome whenever .  That a ⋅ am n m ≠  n

may be true with your breakdown but there could be others.  E.g.  which a a  =  a a3 5 4 4

is now clearly a palindrome.  Indeed,  is always in PAL.am+n

 

Example 4.    What does "balanced" mean?  L =  x ∈  , :  x is balanced .{( )}*

[Discuss if time allows, but this will be more important when we cover pushdown automata as a 
special case of Turing machines.]  This language is often called BAL.  It is in fact 
"isomorphic to" the language of the "unlimited spears" and dragons game when you 
win only if you leave the dungeon with zero spears.  E.g., if you are holding 5 spears, 
you need 5 "closing dragons" to balance out.    With this understood, we can re-use 
the proof of Example 2.
 
 

 

 



The Full MNT
 
We have proved only one direction.  The whole theorem says:
 
Theorem: A language  is regular all PD sets for  are finite.L ⟺ L
 
We've proved that if  has an infinite PD set, then  is not regular.  This is the  L L ⟹

direction, though it may sound like the reverse.  It is the contrapositive of  the  ⟹

direction.  To complete the equivalence, we need to prove the direction.⟸

 
Proof: All PD sets for  are finite is the same as saying the equivalence relation  L ∼ L

has only finitely many equivalence classes.  Take  to be the set of equivalence Q

classes.  For any string  (where  is understood to be the alphabet that  is x ∈  𝛴*
𝛴 L

"over"), there is exactly one equivalence class  to which it belongs.  Note that  is Rx R𝜖

an equivalence class, thus a member of , and it will serve as the start state  of the Q s

DFA  we are building.  Next defineM
 

.                                                                F =  R :  x ∈  L{ x }
 
Note that even though  may be infinite,  can be finite because  and  can L F Rx Ry

coincide---indeed, will coincide whenever .  Indeed,  must be finite, because x ∼  yL F

 is a subset of  which is finite by the premise of .  Finally, we define  by the F Q ⟸ 𝛿

rule
 

 .𝛿 R , c  =  R( x ) xc

 
For this to be "well defined" we need to show that it depends only on the equivalence 
class, not on any  that happens to represent it.  So suppose , i.e., that  also x y ∼  xL y

belongs to , so that .  We need to show that  too.  This Rx R  =  Ry x 𝛿 R , c  =  R( y ) xc

follows if  is the same as .  And justifying this is left as a study guide.  Then Ryc Rxc

 is a legal DFA.  And  because  hits its accepting M =  Q, 𝛴, 𝛿, s, F( ) L M  =  L( ) M

states exactly on the strings  that belong to .  Thus  is regular.  x L L ☒
 
Corollary: In the direction of MNT, the DFA you get not only has the least ⇐

possible number of states, it is unique.  Hence, every regular language has a unique 
minimum-size DFA.  ☒

 

 



 
Putting a checkbox in the corollary statement signifies that we've already essentially 
proved it.  The notes by Debray prove instead that every DFA can be reduced to a 
unique minimum one via the DFA minimization algorithm.  The algorithm is interesting 
for its own sake---it is IMHO the easiest example of "dynamic programming"---but for 
us it is just a "skim".  The reasoning of both halves of MNT helps us recognize 
minimum-size DFA cases, even extreme ones.
 

Proposition: For each , the unique minimum DFA for  k ≥ 1 L = 0 + 1 1 0 + 1k ( )* ( )k-1

has  states.2k

 

Proof: Take .  Then  has size .  We claim that  is PD for : Let any S =  0, 1{ }k S 2k S Lk

, , be given.  By , there is some position  (let's number from 1) x, y ∈  S x ≠  y x ≠  y i

in which they differ.  Take .  Then  and  differ in position  from the end, z =  0i-1 xz yz k

so .  This proves the claim, so the consequence is that any DFA  L xz  ≠  L yzk( ) k( ) Mk

such that  needs at least  states.  Well, we can build a correct  of L M  =  L( k) k 2k Mk

that size by having one state  for each possible combination  of last  bits read qw w k

(treating an initial small string like  as if it had  leading 0s) and defining 10 k - 2

.  The final states are  for those  that begin with : since , 𝛿 q , c  = q( bv ) vc qw w 1 |w| =  k

this  is in the th position from the right.  So  is the unique minimum DFA for . 1 k Mk Lk ☒
 
Note that the NFA  from an earlier lecture only needs  states.  Thus this also Nk k + 1
demonstrates cases where the NFA-to-DFA construction has an unavoidable 
"exponential explosion."  Furthermore, the regular expression for  in the proposition Lk

statement (call it ) needs only  symbols, the log part for the bits in the rk 12 + klog2( )

number .  This is an exponential step down in size.  The upshot is that NFAs can k - 1
sometimes be exponentially more succinct than DFAs, and regular expressions (with 
numerical powering) can be even more succinct in some cases.
 
Using MNT For Design Hints (as time allows)
 
We can use this direction to help us understand regular languages and build ⟸

DFAs for them.  Let's revisit the example is even .  Then L = x ∈ 𝛴 :  #0 x  { * ( ) }

 iff the numbers of s in  and  are both even or both odd. Hence the relation x ∼  yL 0 x y

 has just two equivalence classes. Here is the DFA:∼ L

 

 



 
Now let's try a trickier example by conjoining "even s" with another condition of not 0

having  as a substring: 00

L =  x :  #0 x  is even and x has no 00{ ( ) }

[In regular expression terms,  equals  but set-L 1 01 0 1  ⧵  0 + 1 00 0 + 1* *
*

* ( )* ( )*

minus  is not a native regular operator so that doesn't help us even build an NFA, let ⧵

alone a DFA, to accept .  So let's ignore this attempt and try using (1) to build a DFA L

 by "MNT-enlightened trial and error."]  We know that , so the start state will M 𝜖 ∈  L

be accepting, and that  and  are both not in .  Indeed,  causes a "dead 0 00 L 00

condition" because no string beginning with  can possibly belong to , so it should 00 L
go to a dead state.  That gives us part of the machine:

 
How about the string ?  It can still be a loop at the start state.  At the left end of a 1

string it makes no difference to having a possible , so .  But what about the 00 1 ∈  R𝜖

loop on  which we had at the "odd" state?  Can we still direct it back to that state?  It 1

is equivalent to ask whether .  To see why not, consider  and 0 ∼  01L x =  0

.  Take .  Then  is not in  but  is indeed in , y =  01 z =  0 xz =  00 L yz =  010 L

because the  helped us avoid a .   For the same reason, , and clearly 1 00 01 ≁  00L

 because  is in  and  is not (technically, they are distinguished by 01 ≁  𝜖 𝜖 L 01

).  Thus  is a PD set of size , and so we need a fourth z =  𝜖 S' =  𝜖, 0, 00, 01{ } 4

state to process it to.  Now, what about that string ?  It is in , but is it in ?  010 L R𝜖

 
It is not, but finding a string  such that  is not so fast.  We need z L 𝜖 ⋅ z  ≠  L 010 ⋅ z( ) ( )

to activate the "no " condition by making  begin with , but then we need another -00 z 0 0
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--but not right away---to make .  Thus  is the shortest distinguishing z ∈  L z =  010
string.  This gives us:
 

 
So we wound up needing 5 states.  Is that enough?  Well, can we complete the 
machine with arcs from the "even s, last char " state?  Clearly  goes to , and  0 0 0 dead 1

must go to an accepting state. If  can go to the start state, then we're done.  Can it?  1

Yes---by similar reasoning to putting a loop on  at the start state.  So  is done and 1 M

 is a largest possible PD set.S''
 
There is another kind of reasoning we could have done.   is the  of two languages L ∩

represented by the 2-state DFA above and the following simple 3-state DFA for the 
"no substring 00" condition:
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1
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Doing the Cartesian Product construction seems to suggest the final DFA will have 
 states.  But the operation is intersection, so the "dead" condition in the 2 ×  3 =  6

upper DFA knocks-on to make the whole third column dead in the product machine.  
Since you don't need two separate dead states, the number goes down to 5 after all.  
It is a good exercise to carry out the construction and verify that you get the same 5-
state DFA as above.  
 
[On tap Wednesday: Turing Machines.]

 

 




