
CSE491/596, Fri. 9/25/20. Turing Machines

We saw that DFAs , nor even NFAs nor GNFAs, cannot recognize simple languages like M

. How can we augment the DFA model to give it the needed capability?a b : m = nm n

1. Allow to change a character it reads, storing it on its tape.M

2. Allow to move its scanner left L as well as right R (or keep it stationary S).M

Capability 1 by itself changes nothing: the DFA would still have to move R past the changed character.
Capability 2 by itself also does not allow recognizing any nonregular languages. The proof, that every
"two-way DFA" can be simulated by a simple 1-way DFA, is beyond our scope and involves another
"exponential explosion" but we will cite it later to say that the class of regular languages equals
"constant space" on a Turing machine.

But if we give both capabilities together, then we can do it---and lots more besides. The capabilities
add two components to instructions in , making them 5-tuples:𝛿

 where and are states, and are chars, and p, c / d, D, q() p q c d D ∈ L, R, S{ }

The meaning is that if is in state and scans character , then it can change it to , move its M p c d

scanning head one position left, right, or keep it stationary, and finally transit to state . The case q

 is the same as an ordinary FA instruction where moving right is automatic. I tend p, c, c, R, q() p, c, q()

to like to write a slash for the second comma to emphasize that are read and are actions p, c d, D, q

taken; it also visually suggests being changed to . Graphically the instruction looks like:c d

We also regard the blank as an explicit character. I will represent it as in MathCha but in full LaTeX _

you can get "\text{\textvisiblespace}" which turns up the corners to look like more than just an
underscore. My other notes call the blank . The blank belongs not to the input alphabet but to the B 𝛴

work alphabet (capital Gamma) which always includes too. We allow going past the right end of 𝛤 𝛴

the input string where successive tape cells each initially hold the blank. We can also allow x ∈ 𝛴*

moving leftward of the first char of where there are likewise blanks on a "two-way infinite tape", or we x

can stipulate that is initially left-justified on a "one-way infinite tape" and consider any left move from x
the first cell to be a "crash." The Turing Kit package shows a two-way infinite tape and this is the
default. A compromise is to use a one-way infinite tape but place a special left-endmarker char in ∧

cell 0 with occupying cells where . If then the whole tape is initially blank x 1, … , n n = |x| x = 𝜖

except in the last case it has just in cell 0. Then , as well as , belongs to but not to . We will ∧ ∧ _ 𝛤 𝛴

be free to put any other characters we want into , but the blank (and if used) are required. With all 𝛤 ∧

that said, the definition is crisp:

p q
c / d, L()

or p

c / d, D()

for a self-loop.

Definition: A Turing machine is a 7-tuple where and are as with a M = Q, 𝛴, 𝛤, 𝛿, _, s, F () Q, s, F 𝛴

DFA, the work alphabet includes and the blank , and𝛤 𝛴 _

.𝛿 ⊆ Q × 𝛤 × 𝛤 × L, R, S × Q { }

It is deterministic (a DTM) if no two instructions share the same first two components. A DTM is "in
normal form" if consists of one state and there is only one other state in which it can halt, so F qacc qrej

that is a function from to . The notation then becomes 𝛿 Q ⧵ q , q × 𝛤({ acc rej }) 𝛤 × L, R, S × Q({ })

M = Q, 𝛴, 𝛤, 𝛿, _, s, q , q . (acc rej)

To define the language formally, especially when is properly nondeterministic (an NTM), L M() M
requires defining configurations (also called IDs for instantaneous descriptions) and computations, but
especially with DTMs we can use the informal understanding that is the set of input strings that L M()

cause to end up in , while seeing some examples first.M qacc

Multi-Tape Turing Machines

Definition: A -tape Turing machine is a 7-tuple where and are as with a DFA, k M = Q, 𝛴, 𝛤, 𝛿, _, s, F () Q, s, F 𝛴

the work alphabet includes and the blank , and𝛤 𝛴 _

.𝛿 ⊆ Q × 𝛤 × 𝛤 × L, R, S × Q k k { }k

It is deterministic (a DTM) if no two instructions share the same first two components. A DTM is "in normal form" if

 consists of one state and there is only one other state in which it can halt, so that is a function from F qacc qrej 𝛿

 to . The notation then becomes Q ⧵ q , q × 𝛤({ acc rej })
k

𝛤 × L, R, S × Qk { }k

An individual instruction can be notated as:M = Q, 𝛴, 𝛤, 𝛿, _, s, q , q . (acc rej)

 where and are states, and are chars, and p, c , c , … , c / d , … , d , D , … , D , q([1 2 k] [1 k] [1 k]) p q cj dj

D ∈ L, R, S , j = 1 to kj { }

Single Tape Vs. Multiple-Tape TMs---An Example

. has but so reject.L = a b : n = mm n x = bbb m = 0 n = 3 ≠ m

By default, are natural numbers, so is allowed, and so . Recall that when the n, m n = m = 0 𝜖 ∈ L

input is , the TM tape starts off completely blank. Otherwise, the TM starts in the configuration of x 𝜖

scanning the first char of , with the rest of the tape blank. So an initial scan of means that x _ x = 𝜖

and we can make accept right away. And if starts with then it cannot be in , so we can make M x b L M
reject right away. A Turing machine is not required to scan its entire input, though we can impose this
requirement (and when we discuss time complexity classes, we will). This gives us a good beginning
on how to build to recognize step-by-step with goal-oriented reasoning. [Lecture worked on the M L

diagram "interactively"; here we show some stages.]

qacc

_ / _, S()

so x = 𝜖()

qrej

b / b, S()

b / X, L()_ / _, L()

a / a, R()
b / b, R()

X / X, L()

s

a
We've already been able to handle immediate accept and reject
conditions in the start state. Now we decide strategy when x
begins with . The idea is to -out 's and 's one-by-one ina X a b

alternation. If we -out always the leftmost and the rightmost X a b

then the string between (which after the first iteration is)a bm-1 n-1

will belong to if and only if does. So we can recurse and keep:L x

Tape Invariant: and after -ing a the numbersX a b X* * * * X b

of es on left and right are the same, so the string between X

them belongs to if and only if the original does.L x

To perform the -ing of one then the rightmost , add these states and instructions:X a b

qacc

_ / _, S()

so x = 𝜖()

qrej

b / b, S()

s

a / X, R() go right found
b?

Note so we need 4 arcs at each non-𝛤 = a, b, _, X{ }

halting state. We added an arc on at the "go right"X

state because on subsequent iterations the rightmost b
will be next to an not a blank. But what if there is noX

such ? Since we just -ed an , this means there wereb X a

initially more 's than 's, so we should reject.a b

b / X, L()

_ / _, L()

a / a, R()

b / b, R()

X / X, L()

qacc

_ / _, S()

so x = 𝜖()

qrej

b / b, S()

s

a / X, R() go right found
b?

a / a, S , X / X, S() () to
qrej

done?

Now after -ing the matching is when we need to X b
talk about what is successful termination. If there is
an to its left then there are no more 's nor 's, soX a b

we paired them all, thus an should mean goto . X qacc

footnote: do these loop arcs
enforce the tape invariant?

Getting an once again means not enough 's. Ona b

 is when we want to "rewind" to the left end. That isb

Note that the input can belong to without belonging to . Those strings abide by the tape x a b* * L

invariant initially, and we can already see that works correctly on those strings. But what if is M x

something like ? Will our accept when it shouldn't? That's what the footnote is about. aababb M

[This is the question where my Wed. 9/27/23 lecture left off. I will pick up here.]

when we need to stop a leftward loop. So we cannotX
loop at the "done?" state itself but need another state:

b / X, L()

_ / _, L()

a / a, R()

b / b, R()

X / X, L()

_ / _, S()

so x = 𝜖()

qrej

b / b, S()

s

a / X, R() go right
found

right-

most b?

a / a, S , X / X, S() () to
qrej

done?
X / X, S()

to
qacc

a / a, S()

qacc

go left

b / b, L()

a / a, L()

b / b, L()
X / X, R()

The next---and maybe last---questions are: where to send
the arc on , and what actions to do? Most in particular:X

Can we complete the loop and the machine by making it be going back to start? (Yes)X / X, R()

One thing to note is that if the char seen after executing is a , then by the tapeX / X, R() b

invariant it means there are no more 's but still at least one since we went from "done" a b

to "go left", so this is the case . Well, in that case we should reject, and the arcm < n

on going to is already there from the initial design. So: this is OK and is complete.b qrej M

footnote: do these loop arcs
enforce the tape invariant?

these too?

X a b X * * * *

X / X, R()

