
CSE491/596 Fri. 9/29: Multitape Turing Machines and Time Complexity
 

Recall that the single-tape TM we constructed to recognize the language  L =  a  b :  m =  nm n

worked by maintaining the loop invariant (could call it a "tape invariant") that the tape has the form
 

XXX…Xaaa… abbb… bX…XXX
 
where the number of s is initially zero and stays balanced between the right-hand and left-hand sides. X

 Assuming the TM  is correct---or quickly fixable if not---we can ask, how long does it take to accept a M

good  in terms of  here?  The answer is, it takes  steps, owing to lots x =  a  bn n r = m + n = 2n 𝛩 r2

of backing-and-forthing.  
 
Can we make it run faster?  There is a laborious way to make it run much faster on one tape, in 

 time, but we can get an optimal  running time by using a second tape:O n n( log ) O n( )
 

 
Note the straightforwardness of the design as well as the efficiency.  Also note the usefulness of
having the second tape be two-way infinite with a blank to the left of the "column" initially holding the 
first  in  (if any).  An alternative convention is to make both tapes one-way infinite but with a special a x

char  in cell 0 at the left end on tape 1---so that the initial configuration  has  on tape  ∧ I0 ∧ x ⋯ x1 n 1

and just on tape 2 "underneath" the  on tape 1.  We can still start with the tape heads scanning ∧ ∧

the cells in "column 1" even if both are blank (so ).  Then the final accepting instruction in the x =  𝜖

"pop" state becomes ._ ∧ / _ ∧ , SS( )
 
This two-tape DTM has the properties that:

• the input tape head never moves  and never changes a character;L

• whenever the second tape moves , it writes a blank in the cell it just left.L
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The second condition forces the second tape to behave like a stack (except for some "flex" in how top-
of-stack is treated).  A TM obeying these condiitons is formally equivalent to a pushdown automaton 
(PDA).  A language is context-free (and belongs to the class ) if it is recognized by some PDA that CFL

may be nondeterministic (an NPDA); if the machine is deterministic (hence a DPDA) then it belongs to 

the class .  Every regular language is a DCFL, and  is an example of a DCFL that is not DCFL a  bn n

regular.  We will not say much more about CFLs and DCFLs.
 
 
Computations and Computability
 
An instantaneous description (ID), also called a configuration, of a Turing machine  specifies:M

1. The current internal state  of .q M

2. The contents  of the  tapes, such that all else on the tapes is blank. =  w , … , ww 1 k k

3. The positions  of the heads on those tapes. =  h , … , hh 1 k

We can write  to denote an ID.I =  ⟨q, , ⟩w h
 
Write  if there is an instruction in  that when executed in ID  produces ID .  For , write I ⊢  JM 𝛿 I J r ≥  2

 if there is an ID  such that  and .  Also write  for all  and  I ⊢  Kr
M J I ⊢  JM J ⊢  Kr-1

M I ⊢  I0
M I I ⊢  J*

M

if  for some .  These notions apply to nondeterministic TMs as well as DTMs.I ⊢  Jr
M r

 
For a single-tape TM and input , the initial ID can be written  (if we number the cells x I x  =  ⟨s, x, 1⟩0( )

from ) or  (if we use the convention of an initial  in cell 0 but still number  from 1 I x  =  ⟨s, ∧ x, 1⟩0( ) ∧ x

 and start up scanning the first bit rather than the ).  Yet another convention is to start in the ID 1 ∧

 with a right-endmarker  too.  A 1-tape TM is a linear bounded automaton (LBA) if  is ⟨s, ∧ x $, 1⟩ $ 𝛿

syntactically coded so that the only instructions involving the endmarlers have the form  p, ∧/∧ , R, q( )

or , so that the head always stays between  and .p, $ / $, L, q( ) ∧ $
 
For -tape TMs we could use 's to stand for the other tapes being blank and 's for the other head k 𝜖 1
positions, but we won't go any further into details of IDs until we hit complexity theory.  An accepting ID 
has  as its state and a rejecting ID has .  Now we can formally define the language of a TM qacc qrej

(NTMs too):
 

Formal Definition: .L M  =  x :  I x  ⊢  I  for some accepting ID I  ( ) 0( ) *
M f f

 
We can also simiularly define a function  being computable by a Turing machine.  We want to g x = y( )

say that we get an accepting ID  that has  on the tape in some recognizable form.  Here is an "ad-If y
hoc" definition that helps with some technicalities of doing so:
 
Definition: A Turing machine  does "good housekeeping" if:M =  Q, 𝛴, 𝛤, 𝛿, _, s, F( )

 

 



1.  and  is the only other halting state;F =  q{ acc } qrej

2.  never writes the blank  between two chars that are not blank, on any tape;M _

3. Whenever  "wants to accept", it first blanks out all of its tapes---it can find the nonblank M
extremities because there are no internal blanks and then blank them in one right-to-left pass.  
Then it writes a single  on tape 1 and accepts, so .1 I  =  ⟨q , 1, 1⟩f acc

4. Similarly, in a rejecting condition, it blanks all tapes, writes 0, and ends in .I  =  ⟨q , 0, 1⟩r rej

 
Again, we can vary the details but the ideas remain helpful.  The main variation is that if we consider 
the input tape to be read-only and one-way (no L moves on tape 1), then  does not blank the input  M x
but leaves it alone, ends on the blank to its right, and writes the final 1 or 0 on another tape, which 
could be designated the output tape.  More generally, we can code such a machine to compute a 
function , with everything except  on the input tape and  on the output tape blanked out, f x  =  y( ) x y

and the output tape head scanning the first bit of .  Such an , especially when it is deterministic, is y M
called a transducer.
 
It is a useful self-study exercise to show that every TM (using the more-liberal definitions in some other 
texts or implemented by the "Turing Kit" program) can be converted into an equivalent one that does 
good housekeeping and is basically no less efficient.  Then you may assume a given  does good M
housekeeping to begin with.  
 
Then for instance, we can rigorously define that a DTM  on an input  halts, written , we can M x M x ↓( )

specify this means .  Else, we write and can say the computation I x  ⊢  I  ∨  I x  ⊢  I0( ) *
M f 0( ) r M x ↑( )

of  on  diverges.  A DTM  is total if for all , .  To be sure, these formal definitions M x M x ∈  𝛴* M x ↓( )
agree with the informal ideas of halting, and of recognizing a language or computing a function, that we 
had to begin with.
 
[If time allows---even taking HW questions now or earlier---do these definitions too]
 
 
Computability and (Un)Decidability
 
Definition: For any language  over an alphabet , or function :A 𝛴 f :  𝛴  𝛴* → *

•  is computably enumerable (c.e.) if there is a TM  such that .A M L M  =  A( )
– Synonyms: recursively enumerable (r.e.), Turing-acceptable.

•  is decidable if there is a total DTM  such that .A M L M  =  A( )
– Synonym: recursive.  (Avoid the term "recognizable"---it is used both ways).

•  is computable if there is a transducer  that computes  for all .f M f x( ) x ∈  𝛴*

– Note that writing  standardly means that the domain of  is all of , so any f :  𝛴  𝛴* → * f 𝛴*

 computing  must be total.  But we often say  is total computable to remind about this M f f

and clarify when we are not allowing  to be a partial function.   Other synonyms: recursivef
 function, total recursive.

 

 



 
Here is a helpful little proposition that helps in understanding these concepts.  Recall that with the 
Myhill-Nerode theorem, we have been writing  as if the langauge  is a Boolean-valued function.  L x( ) L

We can distinguish the function from  by calling it , where  is the Greek letter chi to stand for L 𝜒 xL( ) 𝜒

characteristic function.
 
Proposition: A language  is decidable if and only if  is a total computable function.L 𝜒L

 
The proof is "by good housekeeping."  The important contrast is that when  is only known to be c.e., L

then  need not be computable: on some , the machine might never halt.  For a pivotal 𝜒L x ∉  L
example, consider the language of the "3n+1 Problem" shown in the opening week:
 

, where .L =  x ∈  N  :  ∃ r  f x  =  1+ ( ) r( ) f x  =  if x is even then x / 2 else 3x + 1( )

 
We can regard binary numbers and binary strings as interchangeable, in various ways.  One way 
specific to , meaning the positive natural numbers, is to delete the leading  in standard binary N

+ 1

notation, which gives a 1-to-1 correspondence to a language  over .  The demo showed a L' 0, 1{ }*

particular TM  that ends on a single  whenever  but does not halt otherwise.M 1 x ∈  L
 

• The Collatz conjecture says that  equals all of , likewise .  Then  is actually total L N
+ L' =  𝛴* M

and that makes  "trivially" decidable.L

• But all we know at this point is that  is computably enumerable.  The  shown in the demo is, I L M
believe, the tiniest program that no one has been able to prove is total.

 
If a language is not decidable, it is called undecidable.  This includes c.e. languages that are not 
decidable.  Starting next week we will cover techniques for showing that languages are undecidable.  It 
helps to have notation to map out classes of languages:
 

• The class of c.e. languages is denoted (only) by .RE

• The class of decidable languages is denoted by  (occasionally, ).REC DEC

• The class of regular languages is denoted by .  The facts that every regular language is REG

decidable, and some decidable languages are not regular (such as  can be neatly a  bn n )

captured by writing .REG ⊂  REC
• The classes of langauges recognized by deterministic and nondeterministic PDAs are denoted 

by  and , respectively, as we have seen.  DCFL CFL

• The classes of languages recognized by deterministic and nondeterministic LBAs are denoted 
by  and , respectively.  DLBA NLBA

• The progression  is called the Chomsky Hierarchy after Noam REG ⊂  CFL ⊂  NLBA ⊂  RE

Chomsky, who characterized these classes via notions of grammars.  One can insert  and DCFL

 and keep a proper progression, but the corresponding grammar notions are "wonky" in the REC

 

 



former case and nonexistent in the latter.  
• However, although , whether  is properly contained in  is unknown.  CFL ⊂  DLBA DLBA NLBA

It is rather like the  versus  question.  We will not address grammars but we will later see P NP

that  and  equal deterministic and nondeterministic space, respectively.DLBA NLBA

• For any class , the complements of languages in  form the class - .  Note that since the C C co C

complement of a regular language is always regular, we have - ; the - does not co REG =  REG co
mean "not regular" here.  

• We will concentrate on , , - , and "neither c.e. nor co-c.e." for the two coming weeks. REC RE co RE

 Here is a little roadmap:

 

 

 

REC

RE co-RE

neither c.e. nor co-c.e.
This diagram conveys some extra information:

 is closed under complements, ◎ REC

, and◎ RE ∩  co - RE =  REC

 All three classes are closed downward under◎

     computable many-one/mapping reductions.
We will prove these after we establish the 
equivalence between Turing machines and
high-level programming languages.

REG




