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What kinds of operations can Turing machines carry out?  We have seen most of the following:What kinds of operations can Turing machines carry out?  We have seen most of the following:

1. 1. Copy a string from one tape to a second tapeCopy a string from one tape to a second tape
2. 2. Compare two strings on separate tapes to test whether they are equalCompare two strings on separate tapes to test whether they are equal
3. 3. Search leftward or rightward on a tape until reaching the end or a sought-for charSearch leftward or rightward on a tape until reaching the end or a sought-for char
4. 4. Loop with back-and-forth Loop with back-and-forth passespasses until an exit condition is met until an exit condition is met
5. 5. Multiply numbers by 2 (by appending a 0), or divide by 2 if even, or multiply by 3...Multiply numbers by 2 (by appending a 0), or divide by 2 if even, or multiply by 3...
6. 6. Add two binary numbersAdd two binary numbers
7. 7. Remember a char in a state while shifting an entire string over one cellRemember a char in a state while shifting an entire string over one cell
8. 8. Use dedicated states to write a dedicated string to a desired locationUse dedicated states to write a dedicated string to a desired location

  
We haven't seen the last two.  Here is an example of how to insert a We haven't seen the last two.  Here is an example of how to insert a  in front of a binary string  in front of a binary string  and and  ∧∧ xx

also put a also put a  after it: after it:$$

  

  
This shows that the "This shows that the " convention" for convention" for  can always be emulated by the bare-startup convention, at can always be emulated by the bare-startup convention, at  ∧∧ II xx00(( ))

the cost of only the cost of only  extra steps on inputs of length  extra steps on inputs of length .  Moreover, if we need to insert a special char,.  Moreover, if we need to insert a special char,  2n2n ++ 11 nn

say say , in the middle of a tape string at any given state , in the middle of a tape string at any given state , we can attach this entire routine at state , we can attach this entire routine at state  by by  @@ qq qq

making making  and using  and using  in place of  in place of , except that the last arc becomes , except that the last arc becomes  so that so that  s s ==  s'  s' ==  q q @@ ∧∧ @@ // @@,, SS(( ))

the head is scanning the head is scanning  in state  in state  and so can execute an option that was not available before. and so can execute an option that was not available before.    @@ s' s' ==  q q

This "shift-over" routine can thus act like an invokable process that returns control to its point of call.This "shift-over" routine can thus act like an invokable process that returns control to its point of call.    
We can repeat it to make more room.  We can also compose it with operation 8 by having more statesWe can repeat it to make more room.  We can also compose it with operation 8 by having more states  
in place of "in place of " " that lay down whatever fixed string " that lay down whatever fixed string  we want to append after  we want to append after ..write$write$ yy xx

  
We can make other operations by composing two or a few of the above.  By combining 2 and 3 we canWe can make other operations by composing two or a few of the above.  By combining 2 and 3 we can  
solve the problem of finding a substring solve the problem of finding a substring  inside a larger string  inside a larger string  (by testing place-by-place, but there (by testing place-by-place, but there  ww xx

are also quicker ways used by compilers).  We can multiply two binary numbers by using repeatedare also quicker ways used by compilers).  We can multiply two binary numbers by using repeated  
addition or by using shifts to emulate the grade-school algorithm and adding up the shifted copies ofaddition or by using shifts to emulate the grade-school algorithm and adding up the shifted copies of  
the first number.  This small vocabulary of machine ops suffices to simulate a rudimentary assemblythe first number.  This small vocabulary of machine ops suffices to simulate a rudimentary assembly  

  

  

ss

remrem00

remrem11

rewrew s's'

00 /∧/∧ ,, RR(( ))

11 /∧/∧ ,, RR(( ))

11 // 11,, RR(( ))

00 // 00,, RR(( ))

11 // 00,, RR(( ))00 // 11,, RR(( ))

__ // 11,, RR(( ))

__ // 00,, RR(( ))

11 // 11,, LL(( ))
00 // 00,, LL(( ))

∧/∧∧/∧ ,, RR(( ))

e.g., 0  1  1  1  0  0  1  0    becomese.g., 0  1  1  1  0  0  1  0    becomes
 0  1  1  1  0  0  1  0   0  1  1  1  0  0  1  0      ∧∧ $$

write$write$
__ // $$,, LL(( ))



language.  The following one is coded to use just one argument for each instruction, but it is fairlylanguage.  The following one is coded to use just one argument for each instruction, but it is fairly  
flexible: it even has indirect load (LDI) and store (STI):flexible: it even has indirect load (LDI) and store (STI):
  

1. 1. LDL LDL    : load a hard-coded literal integer    : load a hard-coded literal integer  into the ALU into the ALUnn nn

2. 2. LDR LDR   : load the contents of register   : load the contents of register  into the ALU into the ALUYY YY

3. 3. LDI LDI     : read the contents of     : read the contents of  as another address  as another address , then do as in LDR , then do as in LDR YY YY ZZ ZZ

4. 4. STO STO   : copy the contents of the ALU into register   : copy the contents of the ALU into register , replacing whatever is there, replacing whatever is thereYY YY

5. 5. STI STI     : read     : read  to get the indirect address  to get the indirect address , then do as in STO , then do as in STO ..YY YY ZZ ZZ

6. 6. ADD ADD   : add the contents of register   : add the contents of register  to the number currently in the ALU to the number currently in the ALUYY YY

7. 7. SUB SUB   : subtract the contents of register   : subtract the contents of register  from the number currently in the ALU from the number currently in the ALUYY YY

8. 8. SHF SHF    : shift the ALU by the hard-coded number    : shift the ALU by the hard-coded number  of places (shift left if  of places (shift left if  is negative) is negative)dd dd dd

9. 9. ABS      : take the absolute value of the number in the ALUABS      : take the absolute value of the number in the ALU
10. 10. JMP JMP  : jump to the hard-coded instruction number  : jump to the hard-coded instruction number  if the ALU currently holds  if the ALU currently holds ..ℓℓ ℓℓ 00

  
Indeed, the main reason for real assembly languages having many more primitive instructions is havingIndeed, the main reason for real assembly languages having many more primitive instructions is having  
different types and sizes of operands: 8-bit char, 16-bit int, 32 or 64-bit float, etc.  Whereas a real "RAMdifferent types and sizes of operands: 8-bit char, 16-bit int, 32 or 64-bit float, etc.  Whereas a real "RAM  
computer" has fixed-size registers, our Turing machine can emulate arbitrary-size registers thanks tocomputer" has fixed-size registers, our Turing machine can emulate arbitrary-size registers thanks to  
how the "shift-over" routine can be sprinkled into its state code to make any extra room needed to storehow the "shift-over" routine can be sprinkled into its state code to make any extra room needed to store  
a bigger value.  Thus our "mini assembly" language is actually rich enough to be a compilation targeta bigger value.  Thus our "mini assembly" language is actually rich enough to be a compilation target  
for any high-level programming language (ignoring special object features put at machine level and thefor any high-level programming language (ignoring special object features put at machine level and the  
like).like).
  
The "Universal RAM Simulator" handoutThe "Universal RAM Simulator" handout  
https://cse.buffalo.edu/~regan/cse396/UTMRAMsimulator.pdfhttps://cse.buffalo.edu/~regan/cse396/UTMRAMsimulator.pdf

has enough hand-drawn detail to serve as proof-of-concept.  Immediately what it proves is:has enough hand-drawn detail to serve as proof-of-concept.  Immediately what it proves is:  
  
Theorem 1Theorem 1: We have built a single DTM : We have built a single DTM  such that for any mini-assembly program  such that for any mini-assembly program  and integer and integer  UU AA

argument argument  to  to , ,  on input  on input  outputs the result (if any) of running  outputs the result (if any) of running  on input  on input .  .  xx AA UU ⟨⟨AA,, xx⟩⟩ AA xx ☒☒
  
Here the angle brackets in Here the angle brackets in  stand for "some transparent way of combining  stand for "some transparent way of combining  and  and  into a single into a single  ⟨⟨AA,, xx⟩⟩ AA xx

string."  We've already been using this notation with IDs, in case we would want to read them as stringsstring."  We've already been using this notation with IDs, in case we would want to read them as strings  
(as later, we will).  One way to implement it is fine provided the angle brackets and comma don't occur(as later, we will).  One way to implement it is fine provided the angle brackets and comma don't occur  
inside inside  and  and : we can treat them as literal characters over, say, the ASCII or UNICODE alphabets---: we can treat them as literal characters over, say, the ASCII or UNICODE alphabets---AA xx

which we can then convert to binary if we wish.  Another that works in this case is to just ram the twowhich we can then convert to binary if we wish.  Another that works in this case is to just ram the two  
strings together as strings together as  or  or , which is fine in teh handout since , which is fine in teh handout since  begins with a  begins with a  and ends with a and ends with a  xAxA AxAx AA !!

semicolon, both of which we suppose do not occur inside semicolon, both of which we suppose do not occur inside .  In general, one can regard the angle.  In general, one can regard the angle  xx

brackets as applying a brackets as applying a pairing functionpairing function.  (Some sources devote time to pairing functions, which can be.  (Some sources devote time to pairing functions, which can be  
composed to encode any tuples as strings and also decode them, but we can dispense with the details.)composed to encode any tuples as strings and also decode them, but we can dispense with the details.)
  
Now we add a further wrinkle using operation 8 above when Now we add a further wrinkle using operation 8 above when  is a single fixed program, rather than is a single fixed program, rather than  AA

one given on-the-fly.one given on-the-fly.    
  

  

  



Theorem 2Theorem 2: Given any program : Given any program  in any known high-level programming language (HLL) that uses in any known high-level programming language (HLL) that uses  PP

standard input and output, we can build a Turing machine standard input and output, we can build a Turing machine  such that for any input  such that for any input  to  to , ,  on on  UUPP xx PP UUPP

input input  replicates the stream output of  replicates the stream output of .  In particular, if .  In particular, if  computes a function  computes a function  then  then  computes computes  xx PP xx(( )) PP ff UUPP

the same function---and moreover, does so with roughly comparable efficiency.the same function---and moreover, does so with roughly comparable efficiency.
  
ProofProof: First use our compilation target to create a mini-assembly program : First use our compilation target to create a mini-assembly program  that simulates  that simulates .  Now.  Now  AAPP PP

 is a fixed literal string over the ASCII alphabet as encoded in the handout.  We can therefore create is a fixed literal string over the ASCII alphabet as encoded in the handout.  We can therefore create  AAPP

 to use something like our "shift-over" routine to convert its input  to use something like our "shift-over" routine to convert its input  into the string  into the string , which is, which is  UUPP xx ⟨⟨AA ,, xx⟩⟩PP

just just  in the handout, on the first tape.  (Or we could use  in the handout, on the first tape.  (Or we could use  which would work similarly.)  Then we which would work similarly.)  Then we  AA xxPP xAxAPP

rewind the head on the first tape and send control to the start state of the fixed program rewind the head on the first tape and send control to the start state of the fixed program  we wrote in we wrote in  UU

Theorem 1.  Then for any Theorem 1.  Then for any ,,xx
  

,,UU xx   ≃≃  U U AA ,, xx   ≃≃  A A xx   ≃≃  P P xxPP(( )) (( PP )) PP(( )) (( ))

  
where the "\simeq" symbol where the "\simeq" symbol says the computations must give the same result if they converge butsays the computations must give the same result if they converge but  ≃≃

allows both to diverge, as of course can happen.allows both to diverge, as of course can happen.    
  
To address efficiency, note first that To address efficiency, note first that  and  and  use basically the same volume of memory registers, so use basically the same volume of memory registers, so  PP UUPP

the the spacespace usage is about the same.  The TM  usage is about the same.  The TM , however, needs extra time because it does not enjoy, however, needs extra time because it does not enjoy  UUPP

true true random accessrandom access---it has to scroll up and down the whole line of registers to find a desired one.  The---it has to scroll up and down the whole line of registers to find a desired one.  The  
length length  of that line of registers, however, includes only the ones that have been previously allocated, of that line of registers, however, includes only the ones that have been previously allocated,  ss

and those allocations used at least and those allocations used at least  steps of  steps of .  The linear search by .  The linear search by  compounds that time by an compounds that time by an  ss PP UUPP

 factor per next instruction of  factor per next instruction of .  Since .  Since  is also at most the total time  is also at most the total time  taken by  taken by  up to a given up to a given  OO ss(( )) AAPP ss tt PP

point, the total compounded time is point, the total compounded time is .  There is, however, a further complication: The "shift-over".  There is, however, a further complication: The "shift-over"  OO tt22

routine may need to be invoked to make more room after repeated addition, for instance.  The literalroutine may need to be invoked to make more room after repeated addition, for instance.  The literal  
code in my handout would bump up the time to code in my handout would bump up the time to  or maybe even  or maybe even , depending on, depending on  OO tt33 OO tt44

implementation details.  However, in 1972, Stephen Cook and Robert Reckhow of Toronto worked out aimplementation details.  However, in 1972, Stephen Cook and Robert Reckhow of Toronto worked out a  
clever caching scheme by which, if clever caching scheme by which, if  uses the  uses the fair-costfair-cost time measure, which charges for the lengths of time measure, which charges for the lengths of  PP

the operands in a RAM instruction, then the time goes back down to the operands in a RAM instruction, then the time goes back down to .  .  OO tt22 ☒☒
  
The import is, simply: The import is, simply: Turing machines have the same computing power as high-levelTuring machines have the same computing power as high-level  
programming languages, likewise the same power as the machines on which they runprogramming languages, likewise the same power as the machines on which they run..  This is  This is  
the main concrete evidence in support of the following.  Alonzo Church had earlier defined notions ofthe main concrete evidence in support of the following.  Alonzo Church had earlier defined notions of  
"recursive" and "r.e." via logical schemes of recursion, before Alan Turing's famous 1936 paper proved"recursive" and "r.e." via logical schemes of recursion, before Alan Turing's famous 1936 paper proved  
his machines equivalent to them.  Church became Turing's PhD advisor at Princeton in 1937--38; I methis machines equivalent to them.  Church became Turing's PhD advisor at Princeton in 1937--38; I met  
him when he received an honorary doctorate from UB in 1990.him when he received an honorary doctorate from UB in 1990.      
  
The Church-Turing Thesis The Church-Turing Thesis (three-part version):(three-part version):

1. 1. Any HLL that will ever be devised will have the same computing power as the Turing machine.Any HLL that will ever be devised will have the same computing power as the Turing machine.
2. 2. Any physical device that will ever be built---even quantum computers---will have no moreAny physical device that will ever be built---even quantum computers---will have no more  

computing power than a Turing machine.computing power than a Turing machine.

  

  



3. 3. For any human being For any human being  who follows a consistent functional procedure to convert (sensory) who follows a consistent functional procedure to convert (sensory)  HH

inputs inputs  into outputs  into outputs , there exists a Turing machine , there exists a Turing machine  that on the same inputs  that on the same inputs  (under a (under a  xx yy MMHH xx

natural string encoding, e.g., pixels for optical input) outputs the same values natural string encoding, e.g., pixels for optical input) outputs the same values .  Moreover, .  Moreover,   yy MMHH

has comparable program size and efficiency to the "grey matter" of has comparable program size and efficiency to the "grey matter" of , or better., or better.HH
  
Plank 1 is often considered a "truism" but maybe it depends on plank 2, which survived a "quantumPlank 1 is often considered a "truism" but maybe it depends on plank 2, which survived a "quantum  
scare" from David Deutsch at Oxford in 1985 and is even more in play when we bring time-efficiencyscare" from David Deutsch at Oxford in 1985 and is even more in play when we bring time-efficiency  
into the picture.  Plank 3 is the philosophically controversial one; the program and memory size into the picture.  Plank 3 is the philosophically controversial one; the program and memory size   SS
needed is the threshold that "The Singularity" talks about.  The "Part Deux" of the C-T thesis is oftenneeded is the threshold that "The Singularity" talks about.  The "Part Deux" of the C-T thesis is often  
ascribed to Alan Cobham and Jack Edmonds from papers they wrote in 1965, in which they justifiedascribed to Alan Cobham and Jack Edmonds from papers they wrote in 1965, in which they justified  
polynomial timepolynomial time as a benchmark for feasible problem-solving. as a benchmark for feasible problem-solving.
  
Polynomial-Time C-T ThesisPolynomial-Time C-T Thesis: As above, plus the assertion that whatever the HLL and/or device: As above, plus the assertion that whatever the HLL and/or device  
physically implementing its programs, there will always be a constant physically implementing its programs, there will always be a constant  such that whatever the such that whatever the  kk

program/device does in time program/device does in time  can be emulated by  can be emulated by  steps of the Turing machine. steps of the Turing machine.tt OO ttkk

  
This was also almost-universally believed until 1994, when Peter Shor proved that quantum computersThis was also almost-universally believed until 1994, when Peter Shor proved that quantum computers  

can factor can factor -digit numbers in -digit numbers in time (idealized---no one has yet built quantum technology that cantime (idealized---no one has yet built quantum technology that can  nn nnOO 22

scale upscale up), whereas the security of most Internet commerce and many other cryptosystems relies on), whereas the security of most Internet commerce and many other cryptosystems relies on  

concrete scaling of the belief that factoring requires roughly concrete scaling of the belief that factoring requires roughly  time, well maybe  time, well maybe  or or  22
𝛺𝛺 nn1/31/3

22
𝛺𝛺 nn1/41/4

 time in most cases...  [Cf. the 1992 movie  time in most cases...  [Cf. the 1992 movie SneakersSneakers and the novel  and the novel Factor ManFactor Man.]  Just last year,.]  Just last year,  22
𝛺𝛺 nn1/51/5

a team led by Google a team led by Google claimedclaimed building a quantum chip capable of achieving a quantum-specific task building a quantum chip capable of achieving a quantum-specific task  
beyond the reach of classical hardware in under 10,000 years.beyond the reach of classical hardware in under 10,000 years.
  
But as long as we stick with "classical" machines---meaning non-quantum hardware---we can take bothBut as long as we stick with "classical" machines---meaning non-quantum hardware---we can take both  
theses as given.  (Note: Actually, transistors and other chip elements theses as given.  (Note: Actually, transistors and other chip elements areare quantum devices, but the quantum devices, but the  
point is that they treat information in the classical manner of point is that they treat information in the classical manner of bitsbits, as opposed to , as opposed to qubitsqubits.)  The import is:.)  The import is:
  
The classes The classes -- , and later , and later -- , remain the same whenever we, remain the same whenever we  RECREC,,   RERE,,  and  and coco RERE PP,,   NPNP,,  and  and coco NPNP
transfer their defining notions to any HLL or classical machine model.  Moreover, it is perfectlytransfer their defining notions to any HLL or classical machine model.  Moreover, it is perfectly  
legitimate to describe Turing machines via pseudocode, provided the pseudocode gives enough detaillegitimate to describe Turing machines via pseudocode, provided the pseudocode gives enough detail  

to pin down the running time to pin down the running time  within a linear  within a linear , a quasi-linear , a quasi-linear , or at worst a polynomial , or at worst a polynomial ,,  tt OO tt(( )) ttOO(( )) ttOO 11(( ))

factor.factor.
  

For example, the 2-tape TM we built to recognize For example, the 2-tape TM we built to recognize  can be described by saying, "Copy can be described by saying, "Copy  aa bb ::m m ==  n nmm nn

leading leading 's to tape 2, then count against 's to tape 2, then count against 's on the rest of tape 1, and accept iff the counts are equal's on the rest of tape 1, and accept iff the counts are equal  aa bb

and the end is reached on tape 1 without any further and the end is reached on tape 1 without any further  appearing. Runtime:  appearing. Runtime:  steps, which is steps, which is  aa OO mm++ nn(( ))

linear in the length linear in the length  of the input." of the input."mm++ nn
  
Theorem 2 also allows us to shortcut proofs of two other theorems:Theorem 2 also allows us to shortcut proofs of two other theorems:

  

  



  
Theorem 3Theorem 3: We can build a : We can build a universal Turing machineuniversal Turing machine, that is, a DTM , that is, a DTM  such that, given any such that, given any  UUTT

transparent encoding transparent encoding  of a DTM  of a DTM  and an input string  and an input string  over the alphabet of  over the alphabet of , ,  on input on input  ⟨⟨MM,, xx⟩⟩ MM xx MM UUTT

 simulates the computation  simulates the computation ..⟨⟨MM,, xx⟩⟩ MM xx(( ))

  
Proof: The Proof: The Turing KitTuring Kit is a Java program  is a Java program  that takes inputs  that takes inputs  where  where  comes from a .tmt file comes from a .tmt file  TT x'x' == ⟨⟨MM,, xx⟩⟩ MM

(a "Turing Machine Text" file) and (a "Turing Machine Text" file) and  is an input to  is an input to  likewise encoded via ASCII characters, and likewise encoded via ASCII characters, and  xx MM

simulates simulates , giving the same output if , giving the same output if .  By Theorem 2 we can compile .  By Theorem 2 we can compile  first to  first to  in our in our  MM xx(( )) MM xx ↓↓(( )) TT AATT

mini-assembly and then to mini-assembly and then to  such that: such that:UUTT

. . UU ⟨⟨MM,, xx⟩⟩   ≃≃ UU x'x'   ≃≃  A A x'x'   ≃≃  T T x'x'   ≃≃  M M xxTT(( )) TT(( )) TT(( )) (( )) (( )) ☒☒
  
Note, incidentally, that this also neatly handles the issue of Note, incidentally, that this also neatly handles the issue of  being allowed any number of tapes being allowed any number of tapes  MM

whereas whereas  has a fixed number---well, the  has a fixed number---well, the  in my handout has 3 tapes but we will see we can cut it in my handout has 3 tapes but we will see we can cut it  UUTT UUTT

to 1 tape, on pain of (only) another quadratic overhead in running time, so Cook and Reckhow's to 1 tape, on pain of (only) another quadratic overhead in running time, so Cook and Reckhow's   OO tt22

overhead bumps up to overhead bumps up to ---but even that is still ---but even that is still polynomial timepolynomial time..OO tt44

  
Theorem 4Theorem 4: For every NTM : For every NTM  we can build a DTM  we can build a DTM  such that  such that ..NN UU LL UU   ==  L L NN(( )) (( ))

  
Proof: We can imagine extending the Proof: We can imagine extending the Turing KitTuring Kit to  to  so that given an NTM  so that given an NTM  and an input  and an input  to  to , it, it  T'T' NN xx NN

does an open-ended loop does an open-ended loop  and for each  and for each  it tries all possible ways  it tries all possible ways  can execute  can execute   t t ==  1 1,, 22,, 33,, 44,, …… tt NN tt

steps on steps on .  If any such way is found to reach the .  If any such way is found to reach the  of  of , then , then  prints "String accepted" and halts. prints "String accepted" and halts.    xx qqaccacc NN T'T'

Now given any Now given any , we can fix it so that we have a Java program , we can fix it so that we have a Java program ).  Now convert ).  Now convert  to a DTM  to a DTM   NN T'T' xxNN(( T'T'NN UU

as in Theorem 3.  Then as in Theorem 3.  Then , so , so  accepts  accepts  if and only if  if and only if  accepts  accepts , thus , thus ..  UU xx   ≃≃  T' T' xx(( )) NN(( )) UU xx NN xx LL UU   ==  L L NN(( )) (( ))

  ☒☒
  
This shortcut proof, however, somewhat conceals the detail in more customary NTM-to-DTM proofs ofThis shortcut proof, however, somewhat conceals the detail in more customary NTM-to-DTM proofs of  
how the simulation may have to fan out exponentially over sequences of IDs of how the simulation may have to fan out exponentially over sequences of IDs of .  That still happens.  That still happens  NN

underneath the words "all possible ways" in this proof.  The point of appealing to the underneath the words "all possible ways" in this proof.  The point of appealing to the Turing KitTuring Kit is that it is that it  
is easier to imagine writing the control structure for this process in Java rather than directly into "Turingis easier to imagine writing the control structure for this process in Java rather than directly into "Turing  
machine code."  The point is that the running time machine code."  The point is that the running time of the of the  you get is definitely  you get is definitely notnot bounded by a bounded by a  uu nn   (( )) UU

polynomial in polynomial in .  Whether a faster simulation can be done, so that .  Whether a faster simulation can be done, so that  for all  for all , is, is  t t ==  t t nn(( )) uu nn   ==  t t nn(( )) (( ))OO 11(( )) NN

exactly the famous exactly the famous  question, which anchors the second half of this course.  But we can say question, which anchors the second half of this course.  But we can say  P P == ??  NP NP

that every NTM that every NTM  accepts a c.e. language, and once we agree on a notion of "total" for NTMs, those accepts a c.e. language, and once we agree on a notion of "total" for NTMs, those  NN

give the same class of decidable languages.give the same class of decidable languages.
  
  
  
[The transit to Monday will probably be here.][The transit to Monday will probably be here.]
  
  
  

  

  



This all also means we do not have to be picky about how languages of practical This all also means we do not have to be picky about how languages of practical decision problemsdecision problems are are  
formalized.  We can specify the problem in a format popularized by the 1983 book formalized.  We can specify the problem in a format popularized by the 1983 book Computers andComputers and  
IntractabilityIntractability by Michael Garey and David Johnson, known as "Garey & Johnson": by Michael Garey and David Johnson, known as "Garey & Johnson":
  

 (the "Acceptance Problem for DFAs): (the "Acceptance Problem for DFAs):AADFADFA

InstanceInstance: : , where , where  is a DFA and  is a DFA and  is an input to  is an input to ⟨⟨MM,, xx⟩⟩ MM xx MM

QuestionQuestion: Does : Does  accept  accept ??MM xx

  
For any decision problem named in this fashion, the language is the set of syntactically-properFor any decision problem named in this fashion, the language is the set of syntactically-proper  
instances for which the answer to the Question is instances for which the answer to the Question is yesyes.  We can make the name of the problem do.  We can make the name of the problem do  
double-duty as the name of the language, so as a language,double-duty as the name of the language, so as a language,

  ..  AA   ==   DFADFA {{⟨⟨MM,, xx⟩⟩ ::  M is a DFA and x  M is a DFA and x ∈∈  L L MM(( ))}}

  
Proposition: Proposition:  is decidable. is decidable.AADFADFA

  
Proof (by algorithm): Given Proof (by algorithm): Given , simply simulate , simply simulate , and accept , and accept  if and only if  if and only if  accepts accepts  x' x' ==   ⟨⟨MM,, xx⟩⟩ MM xx(( )) x'x' MM

.  Since a DFA always halts, the simulation always halts, so our algorithm is total. .  Since a DFA always halts, the simulation always halts, so our algorithm is total. xx ☒☒
  
Now we consider a harder problem---but we've talked about it before.Now we consider a harder problem---but we've talked about it before.
  

 (the "Acceptance Problem for NFAs): (the "Acceptance Problem for NFAs):AANFANFA

InstanceInstance: : , where , where  is an NFA and  is an NFA and  is an input to  is an input to ⟨⟨NN,, xx⟩⟩ NN xx NN

QuestionQuestion: Does : Does  accept  accept ??NN xx

  
If we only care about decidable-versus-undecidable, the following algorithm is fine:If we only care about decidable-versus-undecidable, the following algorithm is fine:
  

1. 1. Convert Convert  into an equivalent DFA  into an equivalent DFA NN MM

2. 2. Now apply the algorithm for Now apply the algorithm for  on  on , and accept if and only if it accepts., and accept if and only if it accepts.AADFADFA ⟨⟨MM,, xx⟩⟩

  
But step 1 can take time exponential in the size of But step 1 can take time exponential in the size of , which we may identify with the number , which we may identify with the number  of states of states  NN rr

in in .  .  [Discuss...][Discuss...]  We can instead get time   We can instead get time  by the method discussed on Monday 9/14 (first page of by the method discussed on Monday 9/14 (first page of  NN rrOO 11(( ))

the notes) of simulating the notes) of simulating  "directly" by tracking the sets  "directly" by tracking the sets  of possible states after processing each of possible states after processing each  NN xx(( )) RRii

bit bit  of  of ..ii xx

  
Now consider:Now consider:

 (the "Non-Emptiness Problem for NFAs): (the "Non-Emptiness Problem for NFAs):NENENFANFA

InstanceInstance: : , where , where  is an NFA. is an NFA.⟨⟨NN⟩⟩ NN

QuestionQuestion: Is : Is   ??LL NN   ≠≠  ∅ ∅(( ))

  
We could convert We could convert  to an equivalent DFA  to an equivalent DFA  and use  and use  being nonempty unless  being nonempty unless  "goes "goes  NN MM LL MM(( )) MM

completely dead."  But we can instead apply breadth-first search to completely dead."  But we can instead apply breadth-first search to  directly, using the fact that: directly, using the fact that:NN

  

  

  



some state some state  is reachable from  is reachable from ..LL NN   ≠≠  ∅  ∅ ⟺⟺(( )) q q ∈∈  F F ss
  
Unlike the BFS for NFA-to-DFA, this BFS is executed directly on the graph of Unlike the BFS for NFA-to-DFA, this BFS is executed directly on the graph of , and hence runs in, and hence runs in  NN

 time.  Since a DFA "Is-A" NFA, this also solves the problem  time.  Since a DFA "Is-A" NFA, this also solves the problem .  Now consider:.  Now consider:rrOO 11(( )) NENEDFADFA

  
::ALLALLDFADFA

InstanceInstance: : , where , where  is a DFA. is a DFA.⟨⟨MM⟩⟩ MM

QuestionQuestion: Is : Is   ??LL MM   ==  𝛴 𝛴(( )) **

  
We We couldcould solve this by applying the DFA minimization algorithm: the answer will be yes iff the algorithm solve this by applying the DFA minimization algorithm: the answer will be yes iff the algorithm  
collapses collapses  down to a single eternal accepting state.  That algorithm does run in  down to a single eternal accepting state.  That algorithm does run in  time.  However, time.  However,  MM rrOO 11(( ))

we can also we can also reducereduce this to our solution of the  this to our solution of the  problem by the algorithm: problem by the algorithm:NN EE(( )) DFADFA

  
1. 1. Convert Convert  to  to  such that  such that ..MM M'M' LL M'M'   ==   ∼∼ LL MM(( )) (( ))

2. 2. Run the BFS procedure on Run the BFS procedure on ..M'M'

3. 3. Accept Accept  iff the procedure  iff the procedure rejectsrejects---that is, if it says ---that is, if it says ..MM LL M'M'   ==  ∅ ∅(( ))

  
That is, we computed That is, we computed  such that  such that .  Note that.  Note that  ff((⟨⟨MM⟩⟩   ==   ⟨⟨M'M'⟩⟩)) ⟨⟨MM⟩⟩  ∈∈  ALL ALL   ⟺⟺   ⟨⟨M'M'⟩⟩  ∈∈  E EDFADFA DFADFA

 is the complementary problem/language to  is the complementary problem/language to  --- but this a different matter from --- but this a different matter from  EEDFADFA NENEDFADFA

complementing complementing  within the problem.  To see the subtlety, consider this related problem: within the problem.  To see the subtlety, consider this related problem:MM
  

::ALLALLNFANFA

InstanceInstance: : , where , where  is an NFA. is an NFA.⟨⟨NN⟩⟩ NN

QuestionQuestion: Is : Is   ??LL NN   ==  𝛴 𝛴(( )) **

  
We will see that this problem is We will see that this problem is NP-HardNP-Hard, hence considered unlikely to have a polynomial-time, hence considered unlikely to have a polynomial-time  
algorithm.  It is, however, decidable.algorithm.  It is, however, decidable.    
  
We will next go on to problems that are not decidable at all...We will next go on to problems that are not decidable at all...
  
[Depending on time, either do a first take on the diagonal set, or prove that REC is closed under complement and[Depending on time, either do a first take on the diagonal set, or prove that REC is closed under complement and  
equals RE intersect co-RE.]equals RE intersect co-RE.]

  

  


