
CSE491/596 Lecture 10/6/23 Friday: Decidable and Undecidable Languages

The standard format for specifying decision problems came from a famous text by Michael Garey and
David S. Johnson titled Computers and Intractability:

[Name of problem in small caps]
INSTANCE: [a description of the input(s) to the problem: strings, numbers, machines, graphs, etc.]
QUESTION: [a yes/no condition where yes means the input is accepted]

INSTANCE is also called INPUT; one can abbreviate it to INST and QUESTION to QUES. The
language of the problem is the set of valid instances for which the answer is yes. Sometimes
confusingly, the name of the problem usually doubles as the name of the language. The Sipser text
also established a standard scheme for naming various decision problems that arise with the various
machine, regexp, and grammar classes in this subject. It is best described by example.

: (The "Acceptance Problem for DFAs")ADFA

INST: A DFA and a string . M = Q, 𝛴, 𝛿, s, F() x ∈ 𝛴
*

QUES: Does accept ?M x

The input to a decision procedure for this problem is given in the form . The language is⟨M, x⟩

.A = ⟨M, x⟩ : M is a DFA and M accepts xDFA { }

The length of can be reckoned as roughly of order where is the number of states in N ⟨M, x⟩ m + n m

 (note that the number of instructions for a DFA is times and we can treat as a fixed Q m |𝛴| |𝛴|

constant such as) and as usual. The alphabet of the language can be reckoned as 2 n = |x| ADFA

ASCII or even as . Here is a simple statement of an algorithm to solve the problem:0, 1{ } ADFA

1. Given , first decode and individually. (If not possible, reject.)⟨M, x⟩ M x

2. Run (using a simulator like the Turing Kit) until the DFA reaches the end of .M x() x

3. Accept if accepted , else halt and reject .⟨M, x⟩ M x ⟨M, x⟩

This pseudocode always halts because a DFA always halts. To simulate a step of takes time M M x()

at most order- ; really it can be time per step using good data structures (mainly being able m O m(log)

to assign a pointer to the destination state in any executed instruction). So the running time is O mn()

which gives time taking the length into account. Thus we can say:O N2 N = |⟨M, x⟩|

• The algorithm is a decision procedure to solve the problem.ADFA

• Hence the problem and the language are called decidable.ADFA ADFA

• In fact, they are decidable in polynomial time.

Now suppose we have an NFA in place of the DFA.

: (The "Acceptance Problem for NFAs")ANFA

INST: An NFA and a string . N = Q, 𝛴, 𝛿, s, F() x ∈ 𝛴
*

QUES: Does accept ?N x

The following qualifies as a decision procedure, albeit highly inefficient:

1. Given , first decode and individually.⟨N, x⟩ N x

2. Convert into an equivalent DFA .N M

3. Then run the decision procedure for on and give the same yes/no answer.ADFA ⟨M, x⟩

Step 3 will later be called reducing the (instance of the) latter problem to the (equivalent "mapped"
instance of the) former problem. But step 2 makes this an inefficient reduction---it can require order-of

 time where we are now calling the number of states in . Then again, step 2 does always halt, 2m m N
so if halting is all you care about, it goes as a decision procedure. But faster is:

1. Given , first decode and individually.⟨N, x⟩ N x

2. Initialize to be the -closure of the start state of .R0 𝜖 N

3. For each char of , build the set of states reachable from a state in by processing .xi x Ri Ri-1 xi

4. Accept if and only if , which is if and only if accepts .⟨N, x⟩ R ∩ F ≠ ∅n N x

For each char , step 3 runs in time at worst (again, one can do better with smarter data i O m2

structures), so the whole time is , which is polynomial in . O m n2 |⟨N, x⟩| ≈ m + n

(Non-)Emptiness Problems

This is the first of numerous problems in which the instance type is "Just a Machine."

:NEDFA

INST: (The string code of) A DFA .⟨M⟩ M = Q, 𝛴, 𝛿, s, F()

QUES: Is ?L M ≠ ∅()

The QUESTION is worded oppositely from the text's wording of , which we'll come to. Here is an EDFA

efficient decision procedure:

1. On input , treat as a directed graph without caring about the character labels on arcs.⟨M⟩ M

2. Execute a breadth-first search in that graph from the start node of (the graph of) .s M

3. If the search terminates having visited at least one state in , accept , else reject.F ⟨M⟩

The BFS in step terminates---indeed, in time at worst since the graph has nodes. [Well, it 2 O m2 m

has edges, so you can get better time with random access to good data structures.] The O m()

procedure is correct because if BFS finds a path from to a state in , then the chars along that path s q F

form a string in , so .L M() L M ≠ ∅()

The complementary problem (" " for emptiness) is:E

:EDFA

INST: A DFA .M = Q, 𝛴, 𝛿, s, F()

QUES: Is ?L M = ∅()

The solution is to use the same decision procedure, but switch the "accept" and "reject" cases:

1. On input , treat as a directed graph without caring about the character labels on arcs.⟨M⟩ M

2. Execute a breadth-first search in that graph from the start node of (the graph of) .s M

3. If the search terminates having visited at least one state in , reject , else accept.F ⟨M⟩

The corresponding problems for NFAs are just as easy: they have the same algorithms:

:NENFA

INST: An NFA .N = Q, 𝛴, 𝛿, s, F()

QUES: Is ?L N ≠ ∅()

Solution:

1. On input , treat as a directed graph without caring about the character labels on arcs.⟨N⟩ N

2. Execute a breadth-first search in that graph from the start node of (the graph of) .s N

3. If the search terminates having visited at least one state in , accept , else reject.F ⟨N⟩

This is BFS explicitly in the graph of with node set . It is not the same as the BFS used to convert N Q

an NFA into a DFA, which ran implicitly on the power set of . Also "the same" is:2Q Q

:ENFA

INST: An NFA .N = Q, 𝛴, 𝛿, s, F()

QUES: Is ?L N = ∅()

Solution: run the decision procedure for but interchange the yes/no answers.NENFA

Now we consider a different kind of complementation:

:ALLDFA

INST: A DFA .M = Q, 𝛴, 𝛿, s, F()

QUES: Is ?L M = 𝛴() *

Solution:

1. On input , form the complementary DFA with .⟨M⟩ M' = Q, 𝛴, 𝛿, s, F'() F' = Q ⧵ F

2. Feed to the decision procedure for .⟨M'⟩ EDFA

3. If that procedure accepts , then accept , else reject .⟨M'⟩ ⟨M⟩ ⟨M⟩

This embodies what in Chapter 5 we will call a mapping reduction from to . The ALLDFA EDFA

reduction and the whole procedure are correct because .L M = 𝛴 ⟺ L M' = ∅() * ()

This is not the same as the way we complemented to , and the best way to see why it's NEDFA EDFA

not so simple is to consider the analogous problem for NFAs.

:ALLNFA

INST: An NFA .N = Q, 𝛴, 𝛿, s, F()

QUES: Is ?L N = 𝛴() *

We can solve this by converting into an equivalent DFA and running the decider for on N M ALLDFA

. But that can take exponential time. Can we use the same idea as for of reducting to the ⟨M⟩ ALLDFA

corresponding emptiness problem, , which we solved just as efficiently as for ? The problem ENFA EDFA

is that we can't directly complement an NFA. Surely some other idea can help? The fact is, this
problem is -hard. Nobody (on Earth) knows a polynomial-time algorithm, and most (on Earth) NP

believe that no such algorithm exists.

Two-Machine Problems

Here the input has type "Two Machines", meaning a pair . If the input does not have this w ⟨M , M ⟩1 2 w

pair form, it is rejected to begin with.

:EQDFA

INST: Two DFAs and .M = Q , 𝛴, 𝛿 , s , F1 (1 1 1 1) M = Q , 𝛴, 𝛿 , s , F2 (2 2 2 2)

QUES: Is ?L M = L M(1) (2)

The fact that gives an efficient decision procedure is that two sets and are equal if and only if their A B

symmetric difference is empty. The symmetric A △ B = A ⧵ B ∪ B ⧵A = A∪ B ⧵ A∩ B() () () ()

difference is often written , with also used to mean XOR. Thus if we apply the Cartesian A⊕ B ⊕

product construction to and with XOR as the operation, to produce a DFA , then the answer M1 M2 M3

is yes if and only if .L M = ∅(3)

Solution:

1. Decode a given input string into DFAs and . (If does not have that w = ⟨M , M ⟩1 2 M1 M2 w

form, reject.)

2. Create the Cartesian product DFA with M = Q , 𝛴, 𝛿 , s , F3 (3 3 3 3)

.F = q , q : q ∈ F XOR q ∈ F3 {(1 2) 1 1 2 2 }

3. Feed to the decision procedure for , and accept if and only if that accepts ⟨M ⟩3 EDFA ⟨M , M ⟩1 2

.⟨M ⟩3

If is the maximum of the number of states in and in , then step runs in time (ignoring m Q1 Q2 2 O m2

the length of state labels). Step 3 is run on a quadratically bigger machine, so its own quadratic mlog

time becomes overall, but that's AOK---still polynomial in . But how about:O m4 m

:EQNFA

INST: Two NFAs and .N = Q , 𝛴, 𝛿 , s , F1 (1 1 1 1) N = Q , 𝛴, 𝛿 , s , F2 (2 2 2 2)

QUES: Is ?L N = L N(1) (2)

We can get a decision procedure by converting the NFAs into DFAs and and testing whether M1 M2

. For decidability purposes, that is all we need to say, but it is inefficient. Can't we L M = L M(1) (2)

apply the Cartesian product idea directly to and ? If the operation is intersection or union, this N1 N2

makes a good self-study question, but for difference or symmetric difference/XOR, there is a clear
reason for doubt: If we could solve efficiently in general, then we could solve it efficiently in EQNFA

cases where is a fixed NFA that accepts all strings. Then we would have:N2

 .⟨N , N ⟩ ∈ EQ ⟺ ⟨N ⟩ ∈ ALL1 2 NFA 1 NFA

But we have already asserted above that is -hard. So this blocks the attempt to solve ALLNFA NP

, and in fact, this shows that the problem is -hard as well.EQNFA EQNFA NP

One can define all these problems when the givens are regular expressions or GNFAs rather than
DFAs or NFAs. The Sipser naming scheme will write the problems as , , , EQRegexp AGNFA ALLRegexp

, and so on. They are all decidable because regular expressions and GNFAs are convertible NEGNFA

to NFAs and DFAs, but not always efficiently to the latter. Regular expressions and NFAs convert to
and from each other especially efficiently, and so the problems subscripted " " have much the Regexp

same status as those subscripted " ". NFA

Undecidable Languages

Define . Note that the case , that is, not D = ⟨M⟩ : M does not accept ⟨M⟩ TM { } M ⟨M⟩ ↑() M

halting on its own code, counts as being in the language even though you can't immediately ⟨M⟩ DTM

"register" that condition.

Theorem: The language is not c.e.---that is, there does not exist a TM such that .DTM Q L Q = D() TM

I am using the letter in a new way, to refer to a whole machine rather than its set of states, in order to Q
reinforce the point that this machine does not actually exist although the proof involves talking about it
as if it did. We can say is quixotic, after Don Quixote.Q

Proof. Suppose such a existed. Then it would have a string code . Then we could run Q q = ⟨Q⟩ Q

on input . The logical analysis of that run, on hypothesis , is:q L Q = D() TM

 by Q accepts q ⟺ q is in DTM L Q = D() TM

 by definition of .⟺ Q does not accept q q ∈ DTM

The analysis makes a statement equivalent to its negation, which is a "logical rollback" condition. The
rollback goes all the way to the first sentence of the proof. So such a cannot exist. Q ☒

It is worth reworking this proof in several ways. One is to follow the chain of implications in both
directions like a cat chasing its tail. Another is to use the recursive enumeration of M , M , M , …0 1 2

DTMs, that is, to treat their codes as "Gödel Numbers." Then the definition looks like:

}.D = i : i ∉ L MTM { (i)

The proof then goes: if existed, it would equal for some number . But then accepts ... Q Mq q Q q ⟺

as above.

We compare with an abstract proof about sets. Consider functions whose arguments belong to a set f

 and whose outputs are subsets of . The function from an NFA becomes such a function A A p, c𝛿()

when you fix the char . Thus we write where denotes the power set. Then being c f : A P A→ () P f

onto would mean that every subset of is a value of on some argument(s). But we have:A f

Theorem: No function can ever be onto .f : A P A→ () P A()

Proof: Suppose we had such an and . Then we would have the subsetA f

.D = a ∈ A : a is not in the set f a{ ()}

By being onto, there would exist such that . But then:f d ∈ A f d = D()

 by d ∈ D ⟺ d is in the set f d() f d = D()

 by definition of .⟺ d is not in the set f d() d ∈ D

The contradiction rolls back to the beginning, so there cannot be such an and . A f ☒

When is a finite set, this is obvious just by counting. Suppose . Then there are A A = 1, 2, 3, 4, 5{ }

 subsets but only elements of to go around. As the size of increases this becomes 2 = 325 5 A A

"more and more obvious." The historical kicker is that the proof works even when is infinite. Georg A

Cantor gave ironclad criteria by which it follows that always has higher cardinality than . In the P A() A

case where or this tells us that the set of all languages has higher cardinality than A = N A = 𝛴*

, i.e., is not countably infinite. Because we have only countably many (string codes or Gödel A
numbers of) Turing machines, this is an "existence proof" that many languages don't have machines.
The function cannot be onto .f ⟨M⟩ = L M() () P 𝛴

*

[Many sources give the illustration where the real numbers are used in place of . There is a R P 𝛴

*

nagging technical issue that two different decimal or binary expansions like and 0.01111... 0.1000...
can denote the same number (0.5 in this case) but in decimal one can avoid it. The real number that is
"not counted" is pictured by going down the main diagonal of an infinite square grid, hence the name
diagonalization for the whole idea. But I like to do without it.]

Yet another variation is to define with regard to other progarmming formalisms besides Turing D
machines, for instance:

System.exit(0) .D = p : p compiles in Java to a program P such that P p does not execute Java { () }

If were c.e. then by the equivalence of Java and TMs, there would be a Java program such DJava Q

that (where acceptance means exiting normally). Then would have a valid code L Q = D() Java Q q

that compiles to and ... the logic is the same as before.Q

One nice aspect of Gödel Numbers is that you don't have to worry about strings that are not valid
codes. So if we define

}D = D = i : i ∉ L MTM { (i)

} = K = K = i : i ∈ L MTM { (i) i : ⟨M , i⟩ ∈ A{ i TM }

then is literally the complement of . Now we can label our basic "class diagram" from before KTM DTM

a little further, populating it with some languages:

REC

RE co-RE

neither c.e. nor co-c.e.

This diagram conveys some extra information:
 is closed under complements, ◎ REC

, and◎ RE ∩ co - RE = REC

 All three classes are closed downward under◎

 computable many-one/mapping reductions.

DK
ATM

