CSE491/596 Lecture Wed. Oct. 7. Undecidable Languages

Define D1y = {{M): M does not accept (M)} . Note that the case M({M)) T , that is, M not
halting on its own code, counts as (M) being in the language D1, even though you can't immediately

"register" that condition.
Theorem: The language Dy, is not c.e.---that is, there does not exist a TM Q such that L(Q) = Dy.

| am using the letter Q in a new way, to refer to a whole machine rather than its set of states, in order to
reinforce the point that this machine does not actually exist although the proof involves talking about it
as if it did. We can say Q is quixotic, after Don Quixote.

Proof. Suppose such a Q existed. Then it would have a string code g = (Q). Then we could run Q
on input 4. The logical analysis of that run, on hypothesis L(Q) = Dryy, is:

Qaccepts g & qisin Dyy by L(Q) = D1um
< (Qdoes not accept q by definition of g € Dry.

The analysis makes a statement equivalent to its negation, which is a "logical rollback" condition. The
rollback goes all the way to the first sentence of the proof. So such a Q cannot exist.

It is worth reworking this proof in several ways. One is to follow the chain of implications in both
directions like a cat chasing its tail. Another is to use the recursive enumeration My, M, M,, ... of
DTMs, that is, to treat their codes as "Go6del Numbers." Then the definition looks like:

DTM = {Z i ¢ L(Ml)}

The proof then goes: if Q existed, it would equal Mq for some number g. But then Q accepts g < ...
as above.

Another help is to compare with an abstract proof about sets. Consider functions f whose arguments
are elements of a set A and whose outputs are subsets of A. The d(p, ) function from an NFA
becomes such a function when you fix the char c. Thus we write f: A — P(A) where P denotes the
power set. Then f being onto would mean that every subset of A is a value of f on some argument(s).
But we have:

Theorem: No function f: A — P(A) can ever be onto P(A).
Proof: Suppose we had such an A and f. Then we would have the subset

D = {a € A: aisnotin theset f(a)}.



By f being onto, there would existd € A such that f(d) = D. Butthen:

d € D < disin the set f(d) by f(d) = D
& disnotintheset f(d) by definitionofd € D.

The contradiction rolls back to the beginning, so there cannot be such an A and f.

When A is a finite set, this is obvious just by counting. Suppose A = {1,2,3,4,5}. Then there are
25 = 32 subsets but only 5 elements of A to go around. As the size of A increases this becomes
"more and more obvious." The historical kicker is that the proof works even when A is infinite. Georg
Cantor gave ironclad criteria by which it follows that P(A) always has higher cardinality than A. In the
case where A = INor A = X~ this tells us that the set of all languages has higher cardinality than
A, i.e., is not countably infinite. Because we have only countably many (string codes or Godel
numbers of) Turing machines, this is an "existence proof" that many languages don't have machines.

The function f({(M)) = L(M) cannot be onto ‘P(Z*).

Many sources give the illustration where the real numbers IR are used in place of ?(Z*). There is a

nagging technical issue that two different decimal or binary expansions like 0.01111... and 0.1000...
can denote the same number (0.5 in this case) but in decimal one can avoid it. The real number that is
"not counted" is pictured by going down the main diagonal of an infinite square grid, hence the name
diagonalization for the whole idea. But I like to do without it.

Yet another variation is to define D with regard to other progarmming formalisms besides Turing
machines, for instance:

Djaa = {p: p compiles in Java to a program P such that P(p) does not execute system.exit(0)}.

If D40, were c.e. then by the equivalence of Java and TMs, there would be a Java program () such
that L(Q) = Dy, (Where acceptance means exiting normally). Then Q would have a valid code g
that compiles to Q and ... the logic is the same as before.

One nice aspect of Gdodel Numbers is that you don't have to worry about strings that are not valid
codes. So if we define
D = Dry = {i:i ¢ L(M,)}
K = Kpy = {i:i € LM))}y={i: (M;,i) € Arym)

then Ky is literally the complement of Dy.



neither c.e. nor co-c.e.

K D This diagram conveys some extra information:

O REC is closed under complements,
ORE N co-RE = REC, and

O All three classes are closed downward under
computable many-one/mapping reductions.

We will prove these after we establish the
equivalence between Turing machines and
high-level programming languages.
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Footnotes:
| showed that the diagonalization proof looks like visually if you don't write g in place of (Q):

Qaccepts (Q) < (Q)isin Dy by L(Q) = D1m
& Qdoes not accept (Q) by definition of (Q) € Dry.

The reason | wrote g is that doing so made the later variant proofs closer in form. There was also a
question in the chat:

Q:ifaisin A, then a should be in P(A), right?

A: Then {a} is in P(A). Consider €: string versus @, {€}: language.

For a followup, Bertrand Russell came up with the most vicious and viscous diagonal set of all:
D = {x:x ¢ x}.

The original freewheeling approach to set theory allowed you to state the possibility of a set being a
member of itself. If you expect that no set could ever be a member of itself, then D would become "the
set of all sets"---but then D would be a member of itself. Indeed, we immediately get the logical
equivalence D € D < D ¢ D. The resolution is not that "x ¢ x" is always true, but rather that "
x € x"and"x ¢ x" do not compile --- because the € relation and its negation are allowed to be
used only between objects of type T and set<T> for some type T. This led to a hierarchy of types,
which were called "ramified", and a book Principia Mathematica that can be analogized to reading the
object code of a compiler, both painful...



