CSE491/596 Lecture Fri. 10/9: Mapping Reductions and Undecidability

Definition: A language A mapping reduces (also called, many-one reduces) to a language B if there
is a computable function f: X* — X* such that forall x € X*,

x € A= f(x) €B.

We then write A < ,,, B. Sometimes we add "via f" to emphasize that f does the reduction. Here is
an elementary example that involves our pairing function (-, - ). Recall the definitions of K, and
Ary via Godel numbers as Ky = {i: i € L(M;)} and Aryy = {{i,x): x € L(M;)}.

Example: Kpyy < ,,, Ay via f(i) = (i, 1) forall i.

Recall that when i and x are coded in binary, we can regard "(i, x)" as literally sandwiching them
between the < and , and > characters, then converting from ASCII to binary. In any event, the function
f(i) = (i, i) is not only computable, it is computable in linear time---hence in polynomial time. We

write A < ? B when the reduction function is computable in polynomial time. This does not matter
when we are studying REC and RE, but will be vital when we jump to NP and P. In point of fact,
essentially all reductions we see will be polynomial-time computable.

If you don't use the Godel numbers but identify programs M with string codes written as (M), then you
would write f({M)) = (M, M). There is no need to write "(M, (M))"---just (M, M) signifies that M
is being packaged up as both program and data. The problem then becomes what to do with f(x) for
strings x that are not valid codes? There are two main styles of handling this:

1. Consider any "non-compiling code" to be a code for the "null machine" M. So you would get
f(x) = (Mo, My).

2. If you know the target language B and a fixed string 1, thst is not in B, then you can define
f(x) = y for all "invalid" x.

In this case you can consider these styles to be the same by taking yo = (Mo, My) . When B = X7,
however, both ideas are not applicable.

3. A permissible third way is to ignore the issue of invalid codes and regard f as a computable
function not from X to X* but (in this case) from the type "One Turing machine" to the type "A
Turing machine and a string".

Option 3 is AOK in practice but beware a curious fact: Officially since 1998, the set of valid C++
programs is no longer decidable. For every ANSI standard compiler there are C++ programs that
employ "template metaprogramming" in ways that can proliferate like in "The Sorcerer's Apprentice"
and make the compiler never halt---until the stack blows. But we may treat "TM" and "Java program"



etc. as basic types presumed decidable---which implies they can be put into a nondecreasing 1-to-1
correspondence with all strings (or all numbers), anyway.

Of course the definition of f being computable is that there is a total Turing machine computing it.
Many sources reference that Turing machine. There are already the Turing machines being analyzed
in problems like Kps and Ary. Worse, IMHO, reductions proofs in these sources also refer to
hypothetical Turing machines that don't exist. | try to cut down the multiplicity by avoiding the last and
portraying the reduction functions as tranformations of program code. Here is an example. Define
HPry = {{i,x): M;(x) | }. Thisis the language of the Halting Problem.

Example: Amy; <, HPpy via f((M, x)) = (M, x) for all i, where M’ is transformed from M as
follows:
+ We may presume M is in "good housekeeping" form with g, and qrej its only halting states.
* Make M’ by adding a loop (q,,j,¢/¢,S,q,;) foreveryc € I
« [M’ is not in "good housekeeping form" but we can bolt on a new rejecting state q;ej that is never
reached to restore that form for cosmetic purposes.]

That gives the Construction. Next, we observe that the (function f defined by the construction) is
Computable. As a code transformation, we just have to find g,.; in the code of M and add loops to it.
So, in fact, linear-time computability is clear. It remains to show Correctness. This means we ned to

show that for all machines M and inputs x to M (which are elements of the domain "a machine and a
string"):

M,xy € Apyqy &= (M',x) € HPpy

since (M’,x) = f({M,x)). Unpacking what membership in the languages of these problems
signifies, this means we need to show---again, for all M and x:

M accepts x < M’ on input x halts.

Sometimes one can show an equivalence "directly" in one go, but often, and as a fallback, one can
show the implications in each direction separately:

M accepts x = M(x) goes to q,.c = M’ (x) goes to g, as well = M’'(x) | .
M does not accept x = either M(x) T or M(x) goes to q,,; = M’(x) T either way.

For the second part, we could prefer doing the converse:
M'(x) | = M’ accepts x (because g, is the only place M’ can halt = M accepts x too.

Thus x € L(M) < M’(x) | so the reduction is correct.



| like to diagram the constructions using little pictures:
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Q: Does the same f also reduce HP1) back to Apy,?

This finally shows Turing's famous theorem the way he stated it:
Corollary: The (language of the) Halting Problem is undecidable.
We get it as a corollary of the following general theorem.

Theorem 2: Suppose A and B are languages and A < ,, B. Then:
1. if B is decidable then A is decidable;
2.if Bisc.e.then Ais c.e.;
3. if B is co-c.e. then A is co-c.e.

Moreover, the relation < ,, is transitive.

The items in this theorem are equivalent to their contrapositives:

Theorem 2’: Suppose A and B are languagesand A < ,, B. Then:
1. if A is undecidable then B is undecidable;
2.if Ais not c.e. then Bis not c.e.;
3. if A is not co-c.e. then B is not co-c.e.

So to apply it, note we showed that A = Ky is undecidable because it is the complement of D1y,
which is not even c.e. The first "B" we use is A1p;. By Kty <, Arm we get that the Acceptance
Problem is undecidable---moreover, its language is (c.e. but) not co-c.e. Then by transitivity we
continue with B = HPr,, to get that the Halting Problem is undecidable too. [Most sources follow



history by showing the Halting Problem to be undecidable "from the beginning", with the diagonalization
embedded among other stuff in the proof, but | was confused when | read it that way as a teenager.]

To prove Theorem 2, we can draw more pictures:
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The last bit uses the equivalence of x € A < f(x) € Btox ¢ A < f(x) ¢ B. The import of
these facts can be conveyed by the last convention in our class "landscape" diagram:



neither c.e. nor co-c.e.

Arp, HPp
K D This diagram conveys some extra information:
© REC is closed under complements,
ORE N co—RE = REC, and
© All three classes are closed downward under
computable many-one/mapping reductions.

B
A %> 45° means A <, B



