CSE491/596 Lecture Mon. Oct. 12: Kinds and Examples of Reductions

The first example is relevant to trying to cut down "code bloat" by removing unused classes from object-
oriented code.

USEFULCLASS
Instance: A Java program P and a class C defined in the code of P.
Question: Is there an input x such that P(x) creates an object of class C?

We mapping-reduce Ay, to the language of this decision problem. We need to compute
f((M,w)) = P such that:

+ M accepts w = for some x, P(x) executes an instruction like C ¢ = new C();
« M does not accept w = for all x, P(x) never executes any statement involving C.

| like to picture f as dropping M and w into a flowchart for P:

input x

(ignore x)

Simulate M(w)

f w/o using class C
<

(M, w)

if & when it accepts

execute C ¢ = new C();

A key fine point in the correctness logic is that the class C does not appear anywhere else in the code
of P. The main body of P can be entirely a call to the Turing Kit program with M and w pre-packaged.
This body does not use any classes besides those in the Turing Kit itself. Even if M(w) T , whereupon
P never halts either, it remains true that the class C is never used---so that removing it would not
change the behavior of P, not on any input x. Building the program P is straightforward given any M
and w: just fix M and w to be the arguments in the call to the Turing Kit's main simulation routine and
append the statement shown in the diagram after the place in the Turing Kit's own java code where it
shows the string accepted dialog box. Thus the code mapping f itself is computable, indeed,
easily linear-time computable.

The conclusion is that the problem of detecting (never-)used classes is undecidable. It may seem that
programs P = P, are irrelevant ones by which to demonstrate this because they are so artificial
and stupidly impractical. However:

1. the reduction to these programs shows that there is "no silver bullet" for deciding the useful-code
problem in all cases; and

2. the programs P, ,, are "tip of an iceberg" of cases that have so solidly resisted solution that
most people don't try---exceptions such as the Microsoft Terminator Project are rare.

This kind of reduction is one | call "Waiting for Godot" after a play by Samuel Beckett in which two
people spend the whole time waiting for the title character but he never appears. The real importa is
that there are a lot of "waiting for..." type problems about programs P that one would like to tell in
advance by examining the code of P. The moral is that most of these problems, by dint of being
undecidable in their general theoretical formulations, are practically hard to solve. The practical
problem of eliminating code bloat by removing never-used classes is one of them. Without strict
version control, whether blocks of code have become truly "orphaned" and no longer executed can
become hard to tell.

For a side note, the "type" of the target problem is "Just a progarm P", not "a program and an input
string" as with Ay, itself. We did not map (M, w) to (P, w); w is not the input to P. Instead, x is
quantified existentially in the statement of the problem. This makes sense: the code is useful so long
as some input uses it. The language of the problem combines two existential conditions:

« there exists an x such that when P is run on x, ...
- ...there exists a step at which P creates an object of the class C.

A language defined by existential quantifiers in this way, down to "bedrock" predicates like creating a
class object that are decidable, is generally c.e. The kind of algorithmic technique used to show this is
commonly called "dovetailing." | like to picture dovetailing as occurring inside an enclosing arbitrary
time-allowance loop. In this case, noting that we are trying to analyze P:

input (P, C)
fort = 1,2,3,4, ...:
for each input x up to t (or you can say: of length up to t):
run P(x) for t steps. If P(x) builds an object of class C during those steps, accept (P).

This loop is a program R such that L(R) = {(P,C): (Ix)[P(x) builds an object of class C]}, which is
the language of the USEFULCLASS problem. So this language is c.e. but undecidable.

Many "Waiting for Godot" kind reductions have a target problem that does involve a particular input x.
My illustrating one where x is quantified rather than given sets up the second main kind of reduction,
which | call the "All-Or-Nothing Switch." The switch, when combined with embellishments we'll see
later, can apply to multiple problems at once. Here are three:

NE7p

Instance: A TM M.
Question: Is L(M) # @?

ALL1y
Instance: A TM M.
Question: Is L(M) = X*?

Epstym
Instance: A TM M.
Question: Does M accept €?

In the first problem, it might seem more natural to phrase the question as "is L(M) = @?" but that
would make the language of the problem become {(M): L(M) = @}, which is called E1;;. The
reason we need to use NE1y; = {(M): L(M) # @} is that when doing mapping reductions, we
need to make "yes" cases of the source problem line up with "yes" answers to the target problem. We
will see that usually it is impossible to do it the other way. Here is the reduction:

input x
(ignore x)

Simulate M(w)

if & when it accepts

Here M’ is a Turing machine, but we could get it by using the same call to the Turing Kit and then
converting the resulting Java code to a Turing machine as proved in the Friday 10/2 lecture. Or we can
just build M” by having M’ (which depends on M and w) first write the fixed string (M, w) on its tape
next to x (or even in place of x in this case) and then go to the start state of a universal TM U which is
made to run on (M, w). Either way, f is computable---since U is fixed and the initial "write (M, w)"
step takes time proportional to the length of (M, w) to code, the latter more clearly makes f linear-time

computable. So this Construction is Computable.

Here is the one-shot Correctness analysis for all three target problems:

M accepts w = the "fuzzy box" main body of M always exits, regardless of the input x;
— for all inputs x, M" accepts x;
= L(M’) = X*, which also implies that L(M") # @ and M accepts €.

Thus,
M,w)y € Aryy = f((M,w)) = (M’)isinall of ALL1y;, NET), and Epstys. Whereas,

M doesn’t accept w = the main body of M’ rejects or never finishes; either way, it never accepts;
— for all inputs x, M’ does not accept x;
= L(M’) = @, which also implies that L(M’) # X*ande ¢ L(M’).
Thus,
(M,w) ¢ Ay = f(M,w)) & Eqyy, f(M,w0)) ¢ ALLgpg, and f((M,w)) ¢ Epsqyy.

So we have simultaneously shown Ary; <, NErap, Aty <y ALL7y, and A1y < 4 Epstr.
Thus
all three of these problems and their languages are undecidable.

In passing, here's a self-study question: How would you go about showing A1y < ., Krpm? Showing
Ky < .. Arm was easy, but now we have to package an arbitrary pair (M, w) into a single
machine M’ that accepts its own code if and only if M accepts w. If you think about this task
intensionally, it may seem daunting: how can we vary the code of M’ for all the various w strings so
that M’ does or does not accept its own code depending on whether w gets accepted by M. How on
earth can we pack two things into one? But if you think extensionally in terms of the correctness logic
of a reduction, the answer might "jump off the page" at you...

By showing Arpr < . NE1y, we have not only shown that the NE1,, language is undecidable, we
have shown it is not co-c.e. But since the Aty language is c.e., NE1)s could be c.e.---and indeed it is,
by dovetailing: Given any TM M’, fort = 1,2,3, ... :try M" on all inputs x < f for up to t steps. If
M’ is found to accept any of them within ¢ steps, accept (M), else continue. That the language (of)
Epst is c.e. is simpler to see: given M, just run M’(e) and accept (M’) if and when M’ accepts €.
But how about the language of ALL7y/? Hmmm....

[The transition to Wednesday's lecture will probably be here.]

The third useful reduction technique is something | call the "Delay Switch." The intuition and attitude
are the opposite of "Waiting for Godot" and the all-or-nothing switch. This time you picture your target
machine M’ or target program P as monitoring a condition that you hope doesn't happen, such as
when doing security for a building. The input x to the target machine is first read as giving a length £
of time that you have to monitor the condition for. Usually we just take , = |x|, the length of the input
string x (you may always call this length 7 too). If the condition doesn't happen over that time---that is,
if no "alarm" goes off---then you stay in a good status. But if the alarm goes off within t; steps, then
you "panic" and make M’ (or P) do something else. Because this is a general tool, let's show an
example of the construction even before we decide what problems we're reducing to and from:

&input X

|computen = |x| |
(M) Hf M = Simulate M({M))
for up to n steps
1o yes (panic!)
accept x reject x
(things arggood /

This flowchart is a little more complicated, but it is just as easily computed given the code of M. We've
given (M) not {M, w) in order to help tell this apart from the other reductions and because of the
source problem we get. A key second difference is that all the components of M’ are solid boxes:
M’(x) always halts for any x. The logical analysis now says:

« If M never accepts its own code, then the diamond always takes the 70 branch. So every input
X gets accepted, and so L(M") = X*.

« If M does accept its own code, then there is a number t of steps at which the acceptance
occurs. Thus for any input x of length n > ¢, the simulation of M({M)) in the main body sees

the acceptance. So the yes branch of the diamond is taken, and the "post-alarm" action in this
case is to circle the wagons and reject x. This means that all but the finitely many x having

|x| < t getrejected, so notonly is L(M’) # X7, itisn't even infinite.

What this amounts to is: (M) € Dy < L(M') = X* < f((M)) € ALL7y. So we have
shown D1y < ,, ALL1)\, whereas before we showed A1y < ., ALLTy, hence by transitivity,
Kty < s ALL7p. Since Dy, is not c.e., this means we have shown that ALL7, is not c.e. either.
Hence ALLty, is neither c.e. nor co-c.e. To convey this consequence pictorially:

\ ALLTs must

AY

\ \ be somewhere , /
\ \ inthis intersec- 7/ /

*, tion of cones. 4

\ \ / /
\ \ / /
\ \ / /

\ \ / /

\ / /

\
neither ¢.e. nor co-gé. T
\ / \ /
\ / \ /

o
B
é A/%> 45°

means A <, B

There is an intuition which we will later turn into a theorem while proving its version for NP and co-NP
at the same time. The language D1, has a purely negative feel: the set of M such that M does not
accept its own code. When we boil this down to immediately verifiable statements, we introduce a
universal quantifier:

For all time steps t, M does not accept its own code in that step.

The watchword is that the D, language is definable by purely universal quantification over decidable
predicates. So is the E1)s language:

For all inputs x and all time steps {, M does not accept x within ¢ steps.
We could combine this into just one "for all" quantifier by saying: for all pairs (x, t)... In any event,
much like having a purely existential definition is the hallmark of being c.e., haveing a purely universal
definition makes a language co-c.e. This is to be expected, because a negated definition of the form
=(3t)R(i,t) Aflips around to become (Vt)-R(i, t).
If the language {(i, t) : R(i,t) holds} is decidable, then so is its complement, which (ignoring the issue
of strings that are not valid codes of pairs) is the language of —R(i, t). So we get the same bedrock of

decidable conditions in either case.

With ALLy, however, we have to combine both kinds of quantifier into one statement to define it. The
simplest definition of "L(M) = X™"is:

For all inputs x, a timestep t such that [M accepts x at step {].

The square brackets are there to suggest that the predicate they enclose is a "solid box" meaning
decidable. Believe-it-or-else, this predicate is also named for Stephen Kleene...in a slightly different
form which we will cover once we hit complexity theory.

Now you might wonder: is there a more clever way to define the notion of "L(M) = X*" using just one
kind of quantifier? The fact that ALLt,, is neither c.e. nor co-c.e. says a definite no to this possibility.

As for what it means in practice, you can use the "logical feel" of a problem to pre-judge whether it is
c.e. or co-c.e. (in which case, if asked to show the problem undecidable, the choice of problem to
reduce from is mostly forced), or neither---in which case, it's "carte blanche"---before proving exactly
how it is classified.

[where the material goes from here: mapping-equivalence = ,, ; hardness and completeness; more examples of neither-c.e.-nor-
co-c.e.; Rice's theorem; Godel's theorems as a presentation option; then on to computational complexity theory by the end of next

week.]

