CSE491/596 Lecture Mon. Oct. 19: Hardness, Completeness, and Degrees of Unsolvability

We have seen problem instances of type "A machine and a string" and "Just a machine". Another type
is: "Two machines". For example, the language and problem EQry, is defined by:

Instance: Two deterministic Turing machines M; and M.
Question: Is L(My) = L(M,)?

Show that the language of this problem is neither c.e. not co-c.e. Rather than do reductions from K
and D, we can show this for a simplified special case: Fix M, to be some TM M,; whose language is
X*. Then the reduction f(M) = (M, M) has the property that

M € ALLyy < f(M) € EQqy.

So it mapping-reduces ALL7s to EQ1ps. Since we know that ALLry, is neither c.e. nor co-c.e., the
same is true of EQrp;.

Note that the reduction "restricts" the second value to be a fixed machine. It is called a restriction of the
more-general problem "to" a special case that reduces to it. Another example icomes from the
following consequence of A1), being the language of a universal Turing machine.

Theorem: For every c.e. language A, A < ,, Arm.

Proof. By A being c.e., there exists a DTM M, such that L(M,) = A. For the reduction, we need to
define a function f of type "string" — "machine and a string" such that for all x € X*,

x €A & f(x) € Apy . Sodefine f(x) = (M, x), or f(x) = (a,x) if you treat a as a Godel
number for the machine. Either way, the point is that a is fixed, so this is a linear-time computable
reduction that just copies x onto other stuff. The reduction is correct because

x € A & M,acceptsx < (M,,x) € Apy . X

Definition: Given any class C of languages, a language B is hard for C (under mapping reducibility
< ., Which is the default---later poly-time mapping reductions < P will be the default) if for all

languages A € C,A <,, B. Ifalso B € C, then Bis complete for C (under < ,,), also called C-
complete when the reduicibility relation involved is understood.

Example: Ay is hard for RE under < ,,, and since Ay is c.e., it is complete for RE.(also written RE-
complete or r.e.-complete, less frequently "c.e.-complete."

Proposition:
« If Bis C-hard and B < ,, E, then E is C-hard.
e If Bis C-complete, B < ,, E, and E is in C, then E is also C-complete.
« If B and E are C-complete (for any class C), then B = ,, E.

Examples:
« NE1p, HP1), and Kty are also RE-complete just like Aryy.
« Likewise (by "mirror image"), D1ys and E1y; are complete for co-RE.
« ALLyy, TOT, and EQ1 are hard for both RE and co-RE, but are not complete for either class
because they don't belong to either class. (They are in fact all complete for a higher-up class
which is in a presentation topic; they are = ,, equivalent to each other.)

Human Psych Fact #1: It is hard to think of an undecidable c.e. set that is not RE-complete. Giving
one would be a fairly difficult homework problem---and if we considered completeness under the wider
notion of Turing reductions, this was an open problem for two decades!

This anyway explains why | have been graphing these problems at the very peaks of classes---this
represents completeness visually.

ALL7y @TOT, EQry

\ \

B
A A> 45°

means A <, B

There are languages even higher up in the diagram. One of them---but we will only show that it is
neither c.e. nor co-c.e.—is {{(M) : L(M) is reqular}. Sources call this REGULAR or REGULART,, or
REGT, but | will use the notation Irg¢ to signify that it is the index set of the class of regular
languages.

Definition: For any class C of c.e. langauges (thatis, C C RE), its index set is given by
Ic = {i: L(M;) € C}.

The traditional use of Godel numbers here is why it is called an "index" set. The other way to think
about it is that it is a "purely semantic property"---that is, a property of the language that a program

accepts (or: of the Boolean function it computes) rather than of how the program is coded. For
example E1y; is the index set of {@}, whereas @ is the index set of the empty class.

To show ? 1y < Igreg, We use the "all-or-nothing switch" as the first stage in a "filter":
input x

(ignore x)

Simulate M(w)

My S M-

if & when it accepts

[Lecture showed how to get
the reduction to be literally
from D by cutting w and
doing Simulate M({M)).]

accept x. reject x.

M,w)y € Aty = L(M) PAL = L(M’) is not reqular = (M’) ¢ Igec -
M,wy ¢ Ay = LIM') = @ = L(M') is reqular = (M) € Irgg -

So did we show Aty; < Ireg? No---the opposite. We've reduced the complement of Aty to Ireg -
Knowing what we know about = ,, now, we can tweak this to show D1y < Iggg. We have thus
shown that Igreg is not c.e., besides being undecidable. [Showing that Iggg is not co-c.e. either is a self-
study exercise. In fact, it is hard for ALLtys but not equivalent to it---that gets difficult to show.]

Rice's Theorem: The only decidable index setsare [, = @ and Iz = IN (~ = Z*).

Proof: Because C is neither @ nor RE, we have a language A such that
A and the empty language are not both in or both out of C. Now form the reduction:

(ignore x)

Simulate M(w)

(M, w) ‘—j: M =

if & when it accepts

accept x. o reject x.

frr: Givn Lg witn C#G and CFKEB, 5o Y ia
ﬁ;e‘ {OTV{7[AH7£Z A 501[[/) mmr {-,r y:@ﬁé A 6/5 [42)
Tale an Ma 56 L) = A. W@A ¢, 17 g{CC. |

fuild LW Ey p'a J X

dien X

T ‘ .
K%Wg‘*w"? L) 24 = M.éjgi- Ao %/12
LW Ao A L)z () A M ERe T |

- | A'p <7
P?mﬁi‘?%m A Lm)=A) e meleg e
kg D LW 20 =) ' €3 sine JEC Ty
Githw wo, Tp 3 Miladable 13
E;(amﬁyé»' @?ﬂf_é (M@ agpht wilh /4 {ﬂab‘h/sfmd
o Tazp 9 ondeciddape

y I(’a"lu M.;M vaVV(Cif Wi a4 Gaen an{ C{ﬂ({ 5, AWSWC/;{ () fhat
o p oA Jangpog Q Sl Fa (23 Heckud /?f?w/” [Py,

FYI, Human Psych Fact #2 is that very few appealing concepts of language classes have definitions
more complicated than AYd in form. Ixgg has that form because:

L(M) is reqular <= da DFA M’ such that (M, M’) € EQry,
and the definition of (M, M") € EQT)s has a (somewhat laborious) Y4 form. The index sets of all
complexity classes we will study have similar form. Now on to Complexity Theory from Wed....

