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We have seen problem instances of  type "A machine and a string" and "Just a machine".  Another typeWe have seen problem instances of  type "A machine and a string" and "Just a machine".  Another type  
is: "Two machines".  For example, the language and problem is: "Two machines".  For example, the language and problem  is defined by: is defined by:EQEQTMTM

  
Instance: Two deterministic Turing machines Instance: Two deterministic Turing machines  and  and ..MM11 MM22

Question: Is Question: Is ??LL MM   ==  L L MM(( 11)) (( 22))

  
Show that the language of this problem is neither c.e. not co-c.e.  Rather than do reductions from Show that the language of this problem is neither c.e. not co-c.e.  Rather than do reductions from   KK

and and , we can show this for a simplified special case: Fix , we can show this for a simplified special case: Fix  to be some TM  to be some TM  whose language is whose language is  DD MM22 MMallall

.  Then the reduction .  Then the reduction  has the property that has the property that𝛴𝛴** ff MM   ==   ⟨⟨MM,, MM ⟩⟩(( )) allall

  
..    M M ∈∈  ALL ALL   ⟺⟺  f f MM   ∈∈  EQ EQTMTM (( )) TMTM

  
So it mapping-reduces So it mapping-reduces  to  to .  Since we know that .  Since we know that  is neither c.e. nor co-c.e., the is neither c.e. nor co-c.e., the  ALLALLTMTM EQEQTMTM ALLALLTMTM

same is true of same is true of ..    EQEQTMTM

  
Note that the reduction "restricts" the second value to be a fixed machine.  It is called a Note that the reduction "restricts" the second value to be a fixed machine.  It is called a restriction restriction of theof the  
more-general problem "to" a special case that reduces to it.  Another example icomes from themore-general problem "to" a special case that reduces to it.  Another example icomes from the  
following consequence of following consequence of  being the language of a universal Turing machine. being the language of a universal Turing machine.AATMTM

  
TheoremTheorem: For every c.e. language : For every c.e. language , , ..AA A A ≤≤  A Amm TMTM

  
Proof.Proof.  By   By  being c.e., there exists a DTM  being c.e., there exists a DTM  such that  such that .  For the reduction, we need to.  For the reduction, we need to  AA MMaa LL MM   == AA(( aa))

define a function define a function  of type "string"  of type "string" "machine and a string" such that for all "machine and a string" such that for all ,,  ff →→ x x ∈∈  𝛴 𝛴**

.  So define .  So define , or , or  if you treat  if you treat  as a Gödel as a Gödel  x x ∈∈ A A ⟺⟺ ff xx   ∈∈ AA   (( )) TMTM ff xx   ==   ⟨⟨MM ,, xx⟩⟩(( )) aa ff xx   ==   ⟨⟨aa,, xx⟩⟩(( )) aa

number for the machine.  Either way, the point is that number for the machine.  Either way, the point is that  is fixed, so this is a linear-time computable is fixed, so this is a linear-time computable  aa

reduction that just copies reduction that just copies  onto other stuff.  The reduction is correct because onto other stuff.  The reduction is correct becausexx
  

. . x x ∈∈  A  A ⟺⟺  M M  accepts x  accepts x ⟺⟺ ⟨⟨MM ,, xx⟩⟩  ∈∈ AA   aa aa TMTM ☒☒
  
Definition: Given any class Definition: Given any class  of languages, a language  of languages, a language  is  is hardhard for  for  ( (underunder mapping reducibility mapping reducibility  CC BB CC

, which is the default---later poly-time mapping reductions , which is the default---later poly-time mapping reductions  will be the default) if for all will be the default) if for all  ≤≤ mm ≤≤
pp
mm

languages languages , , .  If also .  If also , then  , then   is  is completecomplete for  for  (under  (under ), also called ), also called --A A ∈∈   CC A A ≤≤  B Bmm B B ∈∈   CC BB CC ≤≤ mm CC

complete complete when the reduicibility relation involved is understood.when the reduicibility relation involved is understood.
  
ExampleExample: :  is hard for  is hard for RERE under  under , and since , and since  is c.e., it is complete for  is c.e., it is complete for RERE.(also written .(also written RERE--AATMTM ≤≤ mm AATMTM

completecomplete or  or r.e.-completer.e.-complete, less frequently "c.e.-complete.", less frequently "c.e.-complete."    
  
Proposition:Proposition:  

• • If If  is  is -hard and -hard and , then , then  is  is -hard.-hard.    BB CC B B ≤≤  E Emm EE CC

• • If If  is  is -complete, -complete, , and , and  is in  is in , then , then  is also  is also -complete.-complete.  BB CC B B ≤≤  E Emm EE CC EE CC

• • If If  and  and  are  are -complete (for any class -complete (for any class ), then ), then .  .  BB EE CC CC B B ≡≡  E Emm ☒☒

  

  



  
Examples:Examples:    

• • , , , and , and  are also  are also RERE-complete-complete  just like just like ..    NENETMTM HPHPTMTM KKTMTM AATMTM

• • Likewise (by "mirror image"), Likewise (by "mirror image"),  and  and  are complete for  are complete for co-REco-RE..    DDTMTM EETMTM

• • , , , and , and  are hard for both  are hard for both RERE and  and co-REco-RE, but are not complete for either class, but are not complete for either class  ALLALLTMTM TOTTOT EQEQTMTM

because they don't belong to either class.  (They are in fact all complete for a higher-up classbecause they don't belong to either class.  (They are in fact all complete for a higher-up class  
which is in a presentation topic; they are which is in a presentation topic; they are  equivalent to each other.) equivalent to each other.)≡≡ mm

  
Human Psych Fact #1Human Psych Fact #1:   It is hard to think of an undecidable c.e. set that is :   It is hard to think of an undecidable c.e. set that is notnot  RERE-complete.  Giving-complete.  Giving  
one would be a fairly difficult homework problem---and if we considered completeness under the widerone would be a fairly difficult homework problem---and if we considered completeness under the wider  
notion of notion of Turing reductionsTuring reductions, this was an open problem for two decades!, this was an open problem for two decades!    
  
This anyway explains why I have been graphing these problems at the very peaks of classes---thisThis anyway explains why I have been graphing these problems at the very peaks of classes---this  
represents completeness visually.represents completeness visually.    

There are languages even higher up in the diagram.  One of them---but we will only show that it isThere are languages even higher up in the diagram.  One of them---but we will only show that it is  
neither c.e. nor co-c.e.---is neither c.e. nor co-c.e.---is .  Sources call this REGULAR or .  Sources call this REGULAR or  or or  ⟨⟨MM⟩⟩ ::  L L MM  is regular is regular{{ (( )) }} REGULARREGULARTMTM

, but I will use the notation , but I will use the notation  to signify that it is the  to signify that it is the index setindex set of the class of regular of the class of regular  REGREGTMTM IIREGREG

languages.languages.    
  
DefinitionDefinition: For any class : For any class  of c.e. langauges (that is,  of c.e. langauges (that is, , its , its index setindex set is given by is given byCC CC  ⊆⊆   RERE))

  
  ..    II   ==   ii ::  L L MM   ∈∈   CCCC {{ (( ii)) }}

  
The traditional use of Gödel numbers here is why it is called an "index" set.  The other way to thinkThe traditional use of Gödel numbers here is why it is called an "index" set.  The other way to think  
about it is that it is a "purely semantic property"---that is, a property of the language that a programabout it is that it is a "purely semantic property"---that is, a property of the language that a program  
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accepts (or: of the Boolean function it computes) rather than of how the program is coded.  Foraccepts (or: of the Boolean function it computes) rather than of how the program is coded.  For  
example example  is the index set of  is the index set of , whereas , whereas  is the index set of the  is the index set of the empty classempty class..EETMTM ∅∅{{ }} ∅∅

  
To show To show , we use the "all-or-nothing switch" as the first stage in a "filter":, we use the "all-or-nothing switch" as the first stage in a "filter":??   ≤≤  I ITMTM REGREG

  
..⟨⟨MM,, ww⟩⟩  ∈∈  A A   ⟹⟹  L L M'M'   ==  PAL  PAL ⟹⟹ LL M'M'  is not regular  is not regular ⟹⟹   ⟨⟨M'M'⟩⟩  ∉∉ II   TMTM (( )) (( )) REGREG

..⟨⟨MM,, ww⟩⟩  ∉∉  A A   ⟹⟹  L L M'M'   ==  ∅  ∅ ⟹⟹ LL M'M'  is regular  is regular ⟹⟹   ⟨⟨M'M'⟩⟩  ∈∈ II   TMTM (( )) (( )) REGREG

  
So did we show So did we show ?  ?  No---the oppositeNo---the opposite.  We've reduced the complement of .  We've reduced the complement of  to  to  . .    AA   ≤≤  I ITMTM REGREG AATMTM IIREGREG

Knowing what we know about Knowing what we know about  now, we can tweak this to show  now, we can tweak this to show .  We have thus.  We have thus  ≡≡ mm DD   ≤≤  I ITMTM REGREG

shown that shown that  is not c.e., besides being undecidable.  [Showing that  is not c.e., besides being undecidable.  [Showing that  is not co-c.e. either is a self- is not co-c.e. either is a self-IIREGREG IIREGREG

study exercise.  In fact, it is hard for study exercise.  In fact, it is hard for  but not equivalent to it---that gets difficult to show.] but not equivalent to it---that gets difficult to show.]ALLALLTMTM

  
Rice's TheoremRice's Theorem: The only decidable index sets are : The only decidable index sets are  and  and ..II   ==  ∅ ∅∅∅ II   ==   NN  ~~ ==  𝛴 𝛴RERE

**

  
Proof: Because Proof: Because  is neither  is neither  nor RE, we have a language  nor RE, we have a language such thatsuch that  CC ∅∅ A A 

 Now form the reduction: Now form the reduction:A and the empty language are not both in or both out of CA and the empty language are not both in or both out of C..

  

  

⟨⟨MM,, ww⟩⟩      ↪↪    M'    M' ==
ff

if & when it acceptsif & when it accepts

Simulate MSimulate M ww(( ))

input xinput x
(ignore x)(ignore x)

accept accept xx..

is is  in PAL? in PAL?xxyesyes nono

reject reject xx..

[Lecture showed how to get[Lecture showed how to get
the reduction to be literallythe reduction to be literally
from from  by cutting  by cutting  and andDDTMTM ww

doing doing ]]Simulate MSimulate M ⟨⟨MM⟩⟩ ..(( ))

⟨⟨MM,, ww⟩⟩      ↪↪    M'    M' ==
ff

if & when it acceptsif & when it accepts

Simulate MSimulate M ww(( ))

(ignore x)(ignore x)

accept accept xx..

is is  in  in ??xx AAyesyes nono

reject reject xx..



  

  
FYI, FYI, Human Psych Fact #2 Human Psych Fact #2 is that very few appealing concepts of language classes have definitionsis that very few appealing concepts of language classes have definitions  
more complicated than more complicated than  in form.  in form.  has that form because: has that form because:∃∀∃∃∀∃ IIREGREG

  ,,LL MM  is regular  is regular ⟺⟺   ∃∃ a DFA M' such that  a DFA M' such that ⟨⟨MM,, M'M'⟩⟩  ∈∈  EQ EQ(( )) TMTM

and the definition of and the definition of  has a (somewhat laborious)  has a (somewhat laborious)  form.  The index sets of all form.  The index sets of all  ⟨⟨MM,, M'M'⟩⟩  ∈∈  EQ EQTMTM ∀∃∀∃

complexity classes we will study have similar form.  Now on to Complexity Theory from Wed....complexity classes we will study have similar form.  Now on to Complexity Theory from Wed....

  

  


