CSE491/596 Lecture Friday 10/23: Problems in NP and Poly-Time Reductions
To repeat the picture at the end of Wednesday's lecture, adding one more language:
TAUT:

Instance: A Boolean formula ¢»’, same as for SAT.

Question: Is ¢’ a tautology, that is, true for all assignments?

Note that ¢ is unsatisfiable = every assignment a makes ¢(a) false < every assignment 2 makes
@’(a) true, where " = —¢p. Thus TAUT is essentially the complement of SAT.

Note differences from

the unbounded B
computability case:

NP intersect co-NP is

not known (or believed) A 0\> 45°

to equal P, and the
quantifiers are length-
bounded by a polynomial.

PRIMES = {2,3,5,7,11,13,17,19,23, ...} (encoded as, say, 10,11,101,111,1011, ...)

This language was formally shown to belong to P only in 2004, but had long been known to be "almost
there" in numerous senses.

FACT:
Instance: An integer N and an integer k.
Question: Does N have a prime factor p such thatp < k?

If you can always answer yes/no in polynomial time 7(11), where n = log,N is the number of bits in N,
then you can do binary search to find a factor p of N in time O(nr(n)). By doing N = n/p and
repeating you can get the complete factorization of N in polynomial time. This is something that the
human race currently does not want us to be able to do, as it would (more than Covid?) "destroy the
world economy" by shredding the basket in which most of our security eggs are still placed. But to
indicate proximity to this peril, we note:

FACT: FACT isin NP N co-NP.

Proof: Suppose the answer to an instance (N, k) is yes. We can verify it by guessing the unique
ai_ _az

prime factorization (u.p.f.)of Nas N = p; p,” -+ p?f. Although the right-hand side may seem long,
¢ cannot be bigger than the number of bits of N in binary because each p; is at least 2, and bigger
powers only make ¢ have to be smaller. The length of the u.p.f. is O(n). To verify it, one must verify
that each p; is prime---but this is in polynomial time as above---and then simply multiply everything
together and check that the result is N. Finally to verify the yes answer, check that at least one of the
piis < k.

Now suppose the answer to an instance (N, k) is no. We can verify it by guessing the unique prime
ay az

factorization (u.pf)of Nas N = p; p, - pff. Although the right-hand side may seem long, £
cannot be bigger than the number of bits of N in binary because each p; is at least 2, and bigger
powers only make ¢ have to be smaller. The length of the u.p.f. is O(n). To verify it, one must verify
that each p; is prime---but this is in polynomial time as above---and then simply multiply everything
together and check that the result is N. Finally to verify the no answer, check that none of the p; is
< k.

Thus we can verify both the yes and no cases (with the same witness!), so both the language and its
complement belong to NP.

This makes the contrast to RE N co-RE = REC all the more important. Of course, we don't know
NP # P either, in contrastto RE # REC. What restores much of the analogy is the similarity under
reductions and having complete problems. We've seen what comes next already:

Definition: A < 51 Bif there is a function f: X* — X* that is computable in polynomial time such
thatforallx € X*,x € A < f(x) € B.

This is sometimes called a "Karp reduction" after Richard M. Karp but saying polynomial-time mapping

reduction (or many-one reduction) is clear. (There is a corresponding notion called "Cook reduction"
after Stephen Cook that uses oracles, but let's ignore it for now.)

Theorem: Suppose A < 51 B. Then:

(@B € P = A € P. SoA ¢ P — B ¢ P.
(b)B € NP = A € NP. SoA ¢ NP = B ¢ NP.
(c)B € co-NP = A € co-NP. SoA ¢ co-NP = B ¢ co-NP.

The proof is similar to the one with REC and RE and co-RE : We take a machine My whose language
is B and the reduction function f and create the machine M 4 that on any input x computes y = f(x)
and runs Mg (y), accepting x if and when My accepts iy. There are two particular details:

+ The composition of two polynomials p and g is a polynomial. Thus iff is computable in p(n) tile,
then it follows in particular that [y| < p(|x]). So if Mp runs in g(m) time, then M 4(x) takes at
most g(p(|x])) time, which is a polynomial in n = |x|. This shows (a).

« The mapping and timing works in (b) with a polynomial-time NTM N in place of a DTM M3p. In
that case we get a polynomial-time NTM N 4, which is what we need for A € NP.

i/ input x

Computey = f(x)
NA . e

Run Ng(y)

if we have an accepting path

-
(iﬁ accept x

Part (c) again follows simply because x € A <= f(x) € Bisthesameasx ¢ A < f(x) ¢ B. This

also means that NP N co-NP is likewise closed downward under <! .

This is all summed up visually in the "cone diagram"---except that we don't know if the lines are definite
because NP = P is a possibility.

B
A ‘/%> 45°

means A <P B

There is one other "grain of salt" that must be taken with all these diagrams: If A and B are two
languages in P (technically, other than the languages @ or X* but we sometimes ignore this
distinction), then automatically A = fn B (this is a good self-study exercise, including why we have the
technicality). Thus to keep up the geometrical intuition of a steep angle meaning A < 51 B, we would

have to warp the diagram so that P is a single point---squshed even more than how the above shows
REG as a tiny subclass of P.

Up at the top of NP (and hence also the top of co-NP) we will get a lot of more meaningful reduction
equivalence thanks to completeness. Before tackling Cook's Theorem on the NP-completeness of
SAT, let's see some simpler examples. Consider these decision problems:

CLIQUE

Instance: An undirected graph G = (V,E) and a numberk > 1.

Question: Does there existaset S C V of k (or more) nodes such that for each pair u,v € S, (u,0)
is an edge in E?

INDEPENDENT SET

Instance: An undirected graph G = (V,E) and a numberk > 1.

Question: Does there existaset S C V of k (or more) nodes such that for each pair u,v € S, (u,v)
is not an edge in E?

Important to keep straight: The languages of these problems are not complements of each other,
despite their differing by just the word "not" at the end. Both languages are in NP with S as the
witness. An important point is that with n = |V/|, there are 2" subsets S that might have to be
considered. A polynomial-time algorithm cannot try each one. Within S, however, there are at most n?
pairs (1, v) that have to be considered. Those can all be iterated through to check the body of the
condition in quadratic time, so it becomes a polynomial-time decidable predicate R(G, S). Itis not even
true that this predicate gets negated between the two languages, because it includes the "for each"
part. It is because this runs over only polynomially-many pairs that | suggest the convention of saying
"for each" rather than "for all" there. What actually gets complemented is the graph G, as expressed
by this fact:

G has a clique of size k < the complementary graph G has an independent set of size k.

Therefore, the simple reduction function f(G, k) = (E,k) reduces CLIQUE to IND SET and also vice-

versa, so the problems are = ﬁq equivalent. [Note that this skips writing the angle brackets around

(G, k); by now that's AOK.] A second fact yields a second equivalence:

The complement of an independent set S in G is a set S” of nodes such that every edge involves a
node in S”. Such an S’ is called (somewhat midleadingly, IMHO) a vertex cover. Therefore:

G has an independent set of size (at least) k < G has a vertex cover of size (at most) n — k.

Note that the graph G stays the same; instead we flip around the target number from k nodes to |V| —k
nodes. In practice, when we're trying to optimize, we want to maximize cliques and independent sets
and minimize vertex covers. The latter gives rise to this decision problem:

VERTEX COVER (VC)
Instance: A graph G and a number { > 1.
Question: Does G have a vertex cover of size (at most) £?

Then IND SET and VC reduce to each other via the reduction g(G, k) = (G,n—k) (whereitis
understood that G = (V,E)andn = |V]|.)

[Next: The NP-completeness of SAT, followed by reductions from SAT to all these problems (by transitivity,
reducing to IND SET will be enough). Now is the time to read the Allender-Loui-Regan notes: first Chapter 27 but
skim/skipping all the proofs, ignoring "alternation”, and stopping after the first two pages on circuits. Then read the
first four sections of Chapter 28.]

