CSE491/596 Lecture Wed. 10/28: Cook-Levin Theorem
The reduction goes not only to SAT but to a highly restricted subcase of SAT:

Definition. A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses
(chl/\Cz/\ /\Cm,

where each clause C; is a disjunction of literals x; or x;. The formula is in k-CNF if each clause has at
most k distinct literals, strictly so if each has exactly k.

3SAT
Instance: A Boolean formula ¢(x1, ..., x,) = C; A C; A --- A C,, in3CNF.

Question: Is there an assignmentc_l) = may -~ a, € {0,1}" suchthat p(ay, ...,a,) = 17

Theorem [Cook 1971, Levin 1971--73]: 3SAT is NP-complete under < fn, where the reduction function
also yields an efficient 1-to-1 correspondence between satisfying assignments and witnesses for the

source problem.

Historical notes: Cook only stated an oracle reduction but his proof implicitly gave a mapping

reduction, and the followup paper by Richard Karp in 1972 made < 51 the norm. The added statement
about mapping the witnesses too comes from Levin and is one reason people accept that he came up
with the theorem independently while working in the Soviet Union even though his paper appeared two

years later. Of course 3SAT < fn SAT by restriction, and Cook actually showed SAT < 51 3SAT in
general. The following proof is by Claus-Peter Schnorr from 1978.

Proof. We have already seen that SAT is in NP and verifying 3SAT is even easier---see notes below.
Now letany A € NP be given. This time we use the "verifier" characterization of NP. We can take a
deterministic TM V' and polynomials p, g such that for all 7 and x of length 7,

x € A& (Ay: lyl = qgn)[Vr accepts {x,y)]

and such that V runs in time p(r) where r = n + g(n). Earlier we stated "|y| < g(n)" as the bound
on witnesses, but now we are entitled to "play a trump card" by saying that the encoding scheme used
to define (x, y) first puts things entirely in binary notation with the i parts padded out to the exact
length g(71). Since whatever alphabet A was originally defined over can be binary-encoded with only a
constant-factor expansion of length, we can regard the length 7 as meaning after the encoding is
applied. Since the reduction function f we are building is given x, its length 71 is a known quantity, so
we can finally specify {x, y) as just being the concatenation xy of the binary strings. Then [{x, y)|
really does equal n + g(n). (We abbreviate g(n) as just g.)

Now we apply Savage's theorem to V. For each 1, we get a circuit C,, with n + g input gates, the
first n for the bits x1, ..., x,, of (the binary encoding of) x, and the others for y,, ..., y,, such that
Cu(xy) = 1 & Vy accepts (x,y). Since NAND is a universal gate, we may suppose every gate in
the body of C,, is NAND. Since V' runs in time p(r), the size of C,, is order-of p(r)> = p(n + q(n))?.
Moreover, because C,, has such a regular structure, we have:

« the function fo(x) = (C)y) is computable in p(1 + q(1))? time, which is polynomial in 7, and
« C, itself depends only on n = |x|, not on the values of the bits of x.

Now we build a Boolean formula ¢,, out of C,,. After the above window-dressing, this comes real
quick.

We first allocate variables x1, ... x,, and yq, ... Y4 to stand for the input gates, so that the positive
literal x; is carried by every wire out of the gate x;, and likewise every wire out of the gate y; carries y;.
Then we allocate variables w, w1, ..., ws for every other wire in the circuit, where w, is the output
wireands = O@(n + q)z) is also proportional to the number of NAND gates g, since every NAND

gate has exactly two input wires. Then every evaluation of C,, carries a Boolean value through each
wire and so gives a legal assignment to these variables---but not every assignment to the wire variables
is a legal evaluation of the circuit. If it is not legal, then it must be inconsistent at some NAND gate.

We write ¢,, to enforce that all gates work correctly.

So consider any NAND gate ¢ in the circuit, calling its input wires 1 and v, and consider any output wire
w (there will generally be more than one of those) from g¢. Define

Py =@WVwWA@VWA@YVIV W,

Note this is in (non-strict) 3CNF where the literals in each clause have the same sign. The point is that
(¢, is satisfied by, and only by, the assignments in {0, 1}3 that make w = 1u NAND ©v. We can't have
u, v, w all be true, and if u or v is false, then w must be true. Thus an assignment to all the variables
satisfies ¢, if and only if it makes the gate ¢ work correctly for the output wire w. So:

$n = /\(pg
8

is a (non-strict) 3CNF formula that is satisfied by exactly those assignments that are legal evaluations
of C,,. We will finally get the effect of "searching for" a witness ¥ to the particular x by fixing the x;
variables to the values given by the actual bits of x and mandating that w, = 1. This is all done by
the "singleton clauses" (wy) andfor1 <i <n,

Bi = (x;)ifthei-thbitofxis 1, else f; = (X,).

Thus we finally define the reduction function f by

fx) = ¢x = Pu A (wo) A B1 A

A By .

Then f(x) is computable by one streaming pass over the circuit C,;, and so is computable in the same

polynomial O (p(1 + q(n))?) time as C,,.

x € A= @y:lyl =q(x)Culxy) = 1 & (Fy€{0,1}7,w € {0,1}**):

For the mapping of the strings x, we have:

the assignment

(x,y, w) satisfies ¢, A wy & ¢, € 3SAT.

For the witnesses, the point is that once a i is chosen, on top of x be

ing given (and fixed by the §;

clauses), the values of the rest of the wires in C,, are determined by evaluating all the gates beginning
at the top. Hence there is no choice in setting the wire variables w; besides w, = 1. Thus the
satisfying assignments are in 1-to-1 correspondence with strings v such that V({x,y)) = 1. (If

x ¢ A then the correspondence is "none-to-none.")

Ne hate abdcd Tyt & & ghat G, st. Xefha Ty M;z“‘ (A9
)("X ég? J'f n {rf"f] /
B¢ 0 Y)’/ N Ypm}
pop -- vl oo -- -
Wemy » v (f‘ﬁ?‘ﬁ 9 {!}w}'J ons (0
1) T [I-J'll o ."rﬂr v v :
Sram) oW _ Wi [«) V ,
o (90 bt whes U on bik Y, WJ’)N
C fom ;‘}’?ﬂﬁ..-5‘?‘|'}/ \# ong m*’f }[¢
n o esss Y g Sve, white
L¥
II A Minin) °7 ,IL\ — [\ I,-")
:r‘)} v, W ‘}VO‘I = U V 1|.44f I A L \(f v \
r!"; Ir-\r_.f.;'_, . v _ f
N A%
L Vv !
' " ,l’(.
w Ilu— | y | "-,.'; - ,"c'} 7 *_‘I_-i;,'_'_" f{{ ,;_I(/
L o l’)‘}‘ﬂ.‘l dﬁ;{ ls - r_ M ey qw! nz [X
c Yy | Sirdlekn lawy
J,.". \ (Ifj o l/\ ; i.'":1l"l o ,r« I-'/X.’ :I] ||'r '_'; ‘I |:l"‘
f‘-’-’»[‘-f ;C 2 J \ / \ \I v \.)(I} ;:,
-1 [| L] s / U C\/ak j”fh “J'P; i
T s W VLT x= (1 >(A|Yz
A v .?;.J. .' ."': ’,l.f.. Y -TI,.':_I);‘ o :I_f (:- .
o o ‘ wIr% U,V w.
L= A l,! v 1) I ’ '-l 14 / .._I‘(\ I L
F _f_) | - J o ! (V] LY 14 - '_' .n‘ n _."f \:,J\. A N
NN AN T vl 2 & BUL, W B U TIY
g L —-: Lt - , '|. \ ATy S/
g yyeshl. B

Some decision problems can be shown to be NP-hard or NP-complete by reductions that are "SAT-
like." The first example uses the idea of a "mask" being a string of 0,1, and @ for "don't care". For
instance, the mask string s; = @01@@0Q@@ forces the second bit to be 0, the third bit to be 1, and the
sixth bit to be 0. A string like 00101001 "obeys" the mask, but 10011011 "violates" it in the third bit.

MASKS
Instance: A set of mask strings sq, ..., S,,, all of the same length 7.

Question: Does there exist a stringa € {0,1}" that violates each of the masks?

Then we get 3SAT <! MASKS via a linear-time reduction f that converts each clause C; to a mask
Sj SO that strings a that violate the mask are the same as assignments that C]-. For instance, if
Ci = (x2 V x3 V x¢), then we get the mask sy = @01@@0@@ above. [This particular function f
is invertible, so that we can readily get the clause from the mask, but it is important to keep in mind
which direction the reduction is going in.]

Clearly the language of the MASKS problem is in NP, so it is NP-complete. We can also reduce
3TAUT (whose instances are Boolean formulas gb in disjunctive normal form, called DNF, having at
most 3 literals per term) to the complementary problem of whether all strings x obey at least one mask.
We can also make an NFA sz that begins with e-arcs to "lines" f]- corresponding to each term T]- of Y.
Each line has n states that work to accept the strings x that obey the corresponding mask. Making Nlp
automatically accept all x of lengths other than n gives a reduction from 3TAUT to the ALLnra

problem, which finally explains why it is hard. (ltis in fact not only co-NP hard under <! as this
shows, but also NP-hard; it is in fact complete for the higher class PSPACE which we will get to next
month.)

The second example uses two kinds of "recommendations":

» "Positive": choose at least one of these items or these guys;
» "Balancing": don't choose all of these items or all of these guys.

A purely-negative recommendation would be "don't choose any of these items or guys" but that doesn't
allow any choice, so obeying each one doesn't add any complexity to the problem. We can get the
effect of "don't choose any of u, v, w" by making the singleton "balancing" recommendations "don't
choose all of {u}", "don't choose all of {v}", and ""don't choose all of {w}" anyway, since the
recommendations are conjoined together in the statement of the problem:

RECS

Instance: A set U of items and sets Py, ..., P, and B4, ..., B, of positive and balancing
recommendations, respectively.

Question: Is there a subset S of U that obeys each recommendation?

Again, the language RECS is in NP. To try to show 3SAT <’ RECS we interpret U as the set of
variables (not all literals, just the positive ones) in teh given 3CNF formula ¢» and S as the subset of
variables set to 1 by an assignment to ¢.

« A clause of the form (1 V w) becomes the positive recommendation, "pick u or pick w."

« Aclause of the form (1 V v V w) becomes the balancing recommendation, "don't pick all of
u,o,w."

* A positive singleton x; becomes "definitely pick x;"; a negative singleton Ei becomes "don't pick
x;"---which as remarked above is a legal balancing recommendation.

Then an assignment satisfies each of the clauses in ¢ if and only if its "true set S obeys each of the
recommendations, so ¢ is satisfiable iff f(¢) = (U, Pq, ..., Py, B, ..., By) is in the language of
RECS. Wait---we didn't define f(¢) for clauses that have both positive and negative literals, so this
isn't a reduction from 3SAT in general. That's right---it's a reduction from the subproblem of 3SAT that
arises in the Cook-Levin-Schnorr reduction. To appreciate and use this, we need to reflect on the proof
more closely.

Scholia (more than just footnotes---some of these may be useful on HWs)

1. Without loss of generality one can take g(11) to be the same polynomial as p(1). This is
tantamount to saying that the verifier Vz(x, y) runs in time p(|x|) that is polynomial in 7 alone.
This makes the verifier incapable of having time to read any y that would be longer than p(|x|).
Many sources do this for simplification.

2. In place of the f3; singleton clauses, we could substitute the bit values of x for the corresponding
literals into the formula ¢, A wy and simplify it. But the 3; are (IMHO) cleaner and can be
written in a single streaming pass over Xx.

3. Many sources insist on strict 3CNF. To get this, we can play our encoding trump card once
again: We code Vi so that witness strings ¥ must have an extra final 0. Then the variable
called Yq must be set to 0 in any satisfying assignment. So we can add Yq to the binary and
singleton clauses to give them all size exactly 3. (If we want to disallow duplicate literals in a
clause, we can enforce i ending in 00 and use i, .1 = 0 too. If we want to keep the feature
that all literals in each clause have the same sign, make y end in 1100.)

4. Doing this also yields the feature that no clause can be satisfied by making all three of its literals
true, since the (1 V v V w) clauses already cannot be satisfied that way owing to (1 V w)
and (v V w). This makes the Cook-Levin construction reduce to “*Not-All-Equal 3SAT,"
abbreviated NAE-3SAT (also with the restruction of the literals in each clause having the same
sign).

5. We can force two wires w, w’ going out of a gate to have the same value by using the clauses

(w Vv W) A (w V w’) rather than do a separate ¢, sub-formula for w’. But then we lose the
equal-sign property.

6. Doing the extra qbg is not a big deal because without loss of generality we can suppose that
each NAND gate has fanout at most 2. We can put NAND gates in a tree to replicate the fanout
(this may take twice as many levels as a simple binary tree). A similar point is that wlog. an NFA
or NTM can be assumed to have binary nondeterminism. This enables assuming that the
witness strings v are binary to begin with.

7. The size r of a 3CNF formula ¢ with 11 variables and m clauses is about m log 1 under the
natural encoding. But it is generally AOK to regard it as m, and it is OK to regard it as n when

we only care about polynomial time. The reason is that ¢» can have at most 8[1;] = O(n3)
distinct clauses (and it must have at least 72/ 3 clauses to use all variables).

8. It follows that B(m) and 5(1’) are the same, so that 3SAT belongs to NTIME[B(r)], which is
called NQL for nondeterministic quasi-linear time, can be shown quite simply: Guess a 0-1 truth
value for every literal in every clause. One streaming pass through the clauses can verify that it
makes at least one literal true in each clause. We then need to check that if, say, some positive
literal x; was given the value 0, then every other occurrence of x; was given 0 and every
occurrence of x; was given 1. This can be done by sorting the (literal,value) pairs on the indices
i to bring all the values for the same i together, and then doing a second single pass to see that
all the values brought together are consistent. Since sorting 3m items needs only O(m log 1)
comparisons, we are done.

9. The polynomial p(n + q(n))2 bounding the time of the reduction and the size of the final formula
¢, may seem huge, but when A belongs to NQL the hugeness goes away. First, we use the
fact that the k-tapes-to-2 construction (part 2 of the first Theorem in the Mon. 10/26 lecture) also
makes the verifier machine oblivious while multiplying its runtime ¢(72) by only a log t(n) factor,
which keeps it in deterministic quasilinear time (DQL). What obliviousness does is save a huge
amount of unnecessary wiring in the circuits C,,. For each timestep i, we know in advance the
cell j the tape head will be in at that time, regardless of the values of the bits in x. So we only
need a "delta gadget" in column j and the two neighboring columns. The wires entering the
other cells just continue through into the next row. This makes the number of gates in C,, be

only O(p(n)) not O(p(n)z). Since ¢, is obtained in a single pass over C,,, its size also
becomes O(p(n)). Since A being in NQL makes both p(11) and g(n) be 5(11), everything is

O(n). This proves Schnorr's Theorem: 3SAT is complete for NQL under DQL reductions.
10. Thus NQL = DQL if and only if 3SAT is in DQL. IMHO, the NQL = DQL? question is more
fundamental than the P versus NP question. It is also "ostensibly" easier to prove
NQL # DQL than NP # P, because you can prove it merely by showing that 3SAT requires
deterministic time Q(nz), say. The "NQL versus quadratic time" question has begun to

receive more attention only recently with evidence that some problems in P cannot be done in

less than 5(712) time---if you are curious, see my joint GLL blog post
https://rjlipton.wordpress.com/2015/06/01/puzzling-evidence/

11. One can further "pad" the encoding to formulas to make a version "3SAT’ " that is in
nondeterministic linear time, NLIN, but you still don't get that the reduction is in deterministic
linear time, DLIN. For a highly technical reason having to do with multitape Turing machines it
is known that NLIN # DLIN, but this result is not "robust"---it goes away if you allow TMs to
use 2-dimensional tapes, for instance.

12. It may seem weird that NLIN has languages that are complete for all of NP, but the point is
that if A is given in NTIME[nk] fork > 1, then the time to compute the reduction and the

size of the final ¢, both expand to order n* (ignoring log n* = O(log n) factors) even with
Schnorr's improvements. My "landscape diagrams" visualize the relationships under
reductions but don't work well for finer gradations of time or space complexity.

[Friday's lecture will not yet need these "scholia" points and will go into what are often called reductions by
component design. It and next week will follow section 4 of ALR chapter 28. Debray covers this kind of reductions
ultra-tersely, so ALR will be primary. But it is AOK just to read Debray section 15 for Friday (except imagine the
reduction going to IND SET rather than to CLIQUE) and then dive into section 4 of ALR chapter 28 on the weekend
after you've already had that taste of what goes on.]

