CSE491/596 Lecture Monday, Nov. 6: Completeness Under Logspace Reductions
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+ If the input tapes of both machine are right-only as well as read-only, then there is no problem:
the output y = f(x) of M is streamed to M’ computing g(y) = z and never has to be written
down.

+ If each machine is allowed r(n) left-to-right streaming passes over its input and y is a stream,
then the tandem can operate with r(n)2 passes on x.

+ Butif M” can demand to back up to a previous input bit i7;_; at any time, then we need to allow
M to be restarted arbitrarily many times. This can be implemented by storing the current
demand-bit i on another Iog-sized tape.
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All the NP-completeness results we've shown have been valid under < ,lfq’ .

GAP is complete for NL under < 18
The language CVP of the Circuit Value Problem: given a Boolean circuit C,, and an input

x € {0,1}",is C,(x) = 1? is complete for P under < ,I,?g
The language TQBF of true quantified Boolean formulas is complete for PSPACE under

< 19 \We will show this next.

Quantified Boolean Formulas (which are really logical sentences)

A quantified Boolean formula (QBF) may have quantifiers 4 and V on single Boolean variables as
well as the Boolean connectives A, V, . AQBF 1 is in prenex form if it has the form

Y = (Qix1)(Q2x2) -+ (Quxp)P(x1, X2, ..., Xp),

where each Q; is d or ¥ and ¢ is an ordinary Boolean formula. The simplest example of a QBF in
prenex form is

Y = (dxq)(dx) -+ (Axp)P(x1, X2, -. ) Xp).

Then v is true if and only if ¢ is satisfiable. In musical counterpoint, the QBF



Y = (Yx1)(Vxp) -+ (Vx,)Q"(x1, X2, ..., Xy)

is true if and only if ¢’ is a tautology. Where it gets trickier---for our brains as well---is when the
quantifiers alternate 4 and V. Then the problem of whether a QBF is true evidently rises above the
level of NP and co-NP. For a higher example from a game like chess, Black has a checkmate in three
if

— — —
(3 bm,)(Ywnt, (3 b,y (Ywnt,)(A bm,) WhitelsMated(72"""").

Here the quantifiers read as being applied to possible moves in a chess position, but they are really
running over Boolean variables

bl,l’bl,zl bl,f’. wl,l,wllz, wu;,' bz,l’ b2,2/ bzlf;le,wlz, wZ,g;b3’1,b3,2, v b3,€,'

that together code the possible moves in binary notation. In the background is another vector of
variables 7_z> representing a chess position square-by-square. Besides a Boolean-level formula for

H
WhitelsMated, we would also need a predicate IsLegalMove(ﬁ), bm,, 7?’) where we need duplicate

copy 7_%’ of the variables in 7_I>to represent the position after Black's first move. And so on with an
invocation of IsLegalMove(ﬁ)’, Wl, 7_7)”) up until the final checkmate position. The relevant analogy

from chess to Turing machines is that our main theorem will involve how IDs work like their "positions".

The mate-in-3 formula counts as having k = 5 alternations. A mate-in-4 would be 7 alternations, and
so on. It seems like if we just wanted to define "Black can give checkmate" we would need infinitely
many quantifiers and variables to handle the possibility of arbitrarily long checkmates, but here is where
the "restricted space" of a concrete 8 X 8 chessboard comes in. Owing to various considerations
including the "fifty move rule" there is an upper limit on the length of a possible checkmate and hence
on the size of the formula. Controlling how the formula size grows with space and time usage is the
key to the proof of our main theorem today.

Let TQBF denote the language of true QBFs (in prenex form).

Note: Misnomers and variant usages abound: When all variables in i are quantified---as represented
above---1/ should really be called a quantified Boolean sentence. Only a sentence can be true or
false; strictly speaking, the word satisfiable applies whenever there is at least one free (i.e.,
unquantified) variable and there is a way to make the formula true. When all assignments to the free
variables X make the formula true then Y is often called "true" although properly it is the QBF (V;)yb
that is true. The language of true QBFs is often (confusingly) called just QBF. The non-quantifier body
¢ of a QBF in prenex form is called its matrix.



PSPACE-completeness of TQBF

The above already shows SAT < '° TQBF and TAUT < '° TQBF. Thus TQBF cannot be in NP
orin co-NP unless NP = co-NP. We will locate it at a hlgher completeness level, that of polynomial
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Theorem: TQBF is complete for PSPACE under < 1,‘;g.

Proof. First, we need to show that TQBF belongs to PSPACE. This is one place where limiting QBFs
to prenex form comes in handy.

Y = (Ax1)(V2x2)(dsx3) - (Vo1 1D(Hn0)p(xq, x2, ... 1,0),
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Now letany A € PSPACE be given. Take a DTM M that accepts A using space O(nk) for some
k > 1. Given any x, we need to produce a QBF 1, thatis true < x € A.

Actually, our proof will not care whether we take an NTM N instead, and will work for any general space
bound s(11) > log n---this is how we will deduce Savitch's theorem from the proof.
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