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• If the input tapes of both machine are right-only as well as read-only, then there is no problem: 

the output  of  is streamed to  computing  and never has to be written y =  f x( ) M M' g y  =  z( )
down.

• If each machine is allowed  left-to-right streaming passes over its input and  is a stream, r n( ) y

then the tandem can operate with  passes on .r n( )2 x

• But if  can demand to back up to a previous input bit  at any time, then we need to allow M' yi-1

 to be restarted arbitrarily many times.  This can be implemented by storing the current M

demand-bit  on another log-sized tape.i

 

 



 
 

• All the NP-completeness results we've shown have been valid under .≤ m
log

• GAP is complete for  under .NL ≤ m
log

• The language CVP of the Circuit Value Problem: given a Boolean circuit  and an input Cn

, is ?  is complete for  under x ∈  0, 1{ }n C x  =  1n( ) P ≤ m
log

• The language TQBF of true quantified Boolean formulas is complete for  under PSPACE

.  We will show this next.≤ m
log

 
 
Quantified Boolean Formulas (which are really logical sentences)
 
A quantified Boolean formula (QBF) may have quantifiers  and  on single Boolean variables as ∃ ∀

well as the Boolean connectives .  A QBF  is in prenex form if it has the form∧ , ∨ , ¬ 𝜓
 

,𝜓 =  Q x Q x ⋯ Q x 𝜙 x , x , … , x( 1 1)( 2 2) ( n n) ( 1 2 n)
 
where each  is  or  and  is an ordinary Boolean formula.  The simplest example of a QBF in Qi ∃ ∀ 𝜙

prenex form is
.𝜓 =  ∃x ∃x ⋯ ∃x 𝜙 x , x , … , x( 1)( 2) ( n) ( 1 2 n)

 
Then  is true if and only if  is satisfiable.  In musical counterpoint, the QBF𝜓 𝜙
 

 

 



𝜓 =  ∀x ∀x ⋯ ∀x 𝜙' x , x , … , x( 1)( 2) ( n) ( 1 2 n)

 
is true if and only if  is a tautology.  Where it gets trickier---for our brains as well---is when the 𝜙'

quantifiers alternate  and .  Then the problem of whether a QBF is true evidently rises above the ∃ ∀

level of  and co- .  For a higher example from a game like chess, Black has a checkmate in three NP NP

if

.∃ ∀ ∃ ∀ ∃ WhiteIsMated '''''( bm1)( wm1)( bm2)( wm2)( bm3) (𝜋 )

 
Here the quantifiers read as being applied to possible moves in a chess position, but they are really 
running over Boolean variables
 
 ; ;b , b , … b ; w , w , …w ; b , b , … b1,1 1,2 1,ℓ 1,1 1,2 1,ℓ 2,1 2,2 2,ℓ w , w , …w2,1 2,2 2,ℓ b , b , … b ; …3,1 3,2 3,ℓ

 
that together code the possible moves in binary notation.  In the background is another vector of 
variables  representing a chess position square-by-square.  Besides a Boolean-level formula for 𝜋

, we would also need a predicate  where we need duplicate WhiteIsMated IsLegalMove , , '(𝜋 bm1 𝜋 )

copy  of the variables in  to represent the position after Black's first move.  And so on with an '𝜋 𝜋

invocation of  up until the final checkmate position.  The relevant analogy IsLegalMove ', , ''(𝜋 wm1 𝜋 )

from chess to Turing machines is that our main theorem will involve how IDs work like their "positions".  
 
The mate-in-3 formula counts as having  alternations.  A mate-in-4 would be 7 alternations, and k =  5
so on.  It seems like if we just wanted to define "Black can give checkmate" we would need infinitely 
many quantifiers and variables to handle the possibility of arbitrarily long checkmates, but here is where 
the "restricted space" of a concrete  chessboard comes in.  Owing to various considerations 8 ×  8
including the "fifty move rule" there is an upper limit on the length of a possible checkmate and hence 
on the size of the formula.  Controlling how the formula size grows with space and time usage is the 
key to the proof of our main theorem today.
 
Let TQBF denote the language of true QBFs (in prenex form).  
 
Note: Misnomers and variant usages abound: When all variables in  are quantified---as represented 𝜓

above---  should really be called a quantified Boolean sentence.  Only a sentence can be true or 𝜓
false; strictly speaking, the word satisfiable applies whenever there is at least one free (i.e., 
unquantified) variable and there is a way to make the formula true.  When all assignments to the free 
variables  make the formula true then  is often called "true" although properly it is the QBF  x 𝜓 ∀ 𝜓( x)
that is true.  The language of true QBFs is often (confusingly) called just QBF.  The non-quantifier body 

 of a QBF in prenex form is called its matrix.𝜙
 
 
 
 

 

 



PSPACE-completeness of TQBF
 

The above already shows  and .  Thus TQBF cannot be in  SAT ≤  TQBFm
log

TAUT ≤  TQBFm
log

NP

or in co-  unless  co- .  We will locate it at a higher completeness level, that of polynomial NP NP = NP

space, .  PSPACE

Theorem: TQBF is complete for  under .PSPACE ≤ m
log

 
Proof.  First, we need to show that TQBF belongs to .  This is one place where limiting QBFs PSPACE

to prenex form comes in handy.  
 

,𝜓 =  ∃x ∀ x ∃ x ⋯ ∀ 1 ∃ 0 𝜙 x , x , … 1, 0( 1)( 2 2)( 3 3) ( n-1 )( n ) ( 1 2 )

 
Now let any  be given.  Take a DTM  that accepts  using space  for some A ∈  PSPACE M A O nk

.  Given any , we need to produce a QBF  that is true .k ≥  1 x 𝜓x ⟺  x ∈  A
 
Actually, our proof will not care whether we take an NTM  instead, and will work for any general space N

bound ---this is how we will deduce Savitch's theorem from the proof.s n  ≥  n( ) log
 

 

 



 

 
 

 

 



 
 
 

 

 


