
CSE491/596 Lecture Fri. 11/20/20: Relativization and Randomness

The most important example of using an oracle Turing machine, IMHO, is the manner in which a
function can be computed if we have an oracle for its associated "undergraph" language:f

}.L = ⟨x, w⟩ : w ≤ f xf { ()

Here is with respect to the natural ordering of strings---which puts shorter strings before longer ones ≤

and otherwise lists same-length strings in alphabetical order. But we can also regard as a numerical f

function under the natural correspondence of and , whereupon is just ordinary f : N N→ 𝛴*
N ≤

numerical less-than-or-equal.

The method is simply binary search. You've probably seen the algorithm in some form, but let's view it
in the oracle machine form. The one thing we need to start the binary search, on any given where we x

want to compute , is a quick way to compute a bound over how big could be. For instance, f x() Bx f x()

 can be where we know (and where , say).Bx 0m+1 |f x | ≤ m() m = |x|k

lo = ; hi = ; 𝜖 Bx

while (hi - lo > 1) { INV: lo < hi≤ f x()

 mid = a string midway between lo and hi;

 query: is <x,mid> in the oracle language ?Lf

 if (yes) {

 lo = mid;

 } else {

 hi = mid;

 }

} //on exit, hi = lo+1 and by INV, lo must equal .f x()

return lo;

Even though there are exponentially many possibilities for among strings of length , indeed f x() ≤ |x|k

order-of possibilities where , the binary search needs at most iterations, each writing a 2n k
n = |x| nk

query of length up to . Thus the whole thing runs in time order-of If , which nk n = n .k 2 2k m = O n()

is the most usual case where the length of is proportional to the length of , then and this all f x() x k = 1

runs in time.O n2

Example: Recall the factoring language was defined as has a prime factor FACT = ⟨N, k⟩ : N{ p

such that . Let us instead define it as has a prime factor such that p ≤ k} FACT = ⟨N, k⟩ : N{ p

 Then is the undergraph of the function the greatest prime factor of . The p ≥ k .} FACT f N =() N

function exnables us to factor by repeatedly finding and dividing out its prime factors. And binary N

search tells us that the language is enough to compute the function:FACT

Theorem: Factoring is computable in quadratic time given as an oracle.FACT

This is summarized by saying that search reduces to decision and is a major reason why languages not
functions are used as the main objects in complexity theory. A second example defines

, where means "is a prefix of." Consider this code:L' = ⟨x, w⟩ : w ⊑ f x f { ()} ⊑

w = ; if () then output fail.𝜖 ⟨x, w⟩ ∉ L'f
while(true) {

 if () {⟨x, w0⟩ ∈ L'f
 w = w0;

 else if ()⟨x, w1⟩ ∈ L'f
 w = w1;

 else return w;

}

On input , this stops when and returns . So it computes . The main example is the x w = f x() w f x()

idea of building up an answer string ---such as a satisfying truth assignment---bit by bit:w

Theorem: If is in , then not only could we decide whether a given Boolean formula is SAT P 𝜙
satisfiable, we would be able to find a satisfying assignment in polynomial time, or tell that none exists.

Relativized Classes and Turing Reductions

If is a class of machines, then we write to be the class of languages over all machines C CB L MB

. Thus for any language ,M B

• P = L M : The DOTM M runs in polynomial time with oracle BB B ()

• NP = B L N : The NOTM N runs in polynomial time with oracle BB ()

• PSPACE = L M : The DOTM M runs in polynomial space with oracle BB B ()

If then we also write and say that polynomial-time Turing reduces to . (Older A ∈ PB A ≤ B
p
T A B

usage: "Cook-reduces" to , in constrast to saying "Karp-reduces" for .) Note: if then A B ≤
p
m A ≤ B

p
m

, i.e. Turing reductions are more general than mapping reductions.A ≤ B
p
T

Fact: For any language , : queries and accepts iff the oracle says no.A A ≤ p
T A M xA() y = x x

Theorem: .P = NP = PSPACETQBF TQBF

Proof: is contained in because TQBF is -complete under and an OTM PSPACE P
TQBF

PSPACE ≤
p
m

can carry out a many-one reduction by making just one query and accepting iff the f y = f x() x

oracle says "yes" to . Now let via a nondeterministic OTM (NOTM) that runs in time y A ∈ NP
TQBF N

. Then on any input of length , can make up to nondeterministic steps and can write O nk x n N x() nk

queries (which are quantified Boolean sentences that may be true or false) of length up to . y nk

Without loss of generality, we may suppose the nondeterministic steps are binary-branching. A
deterministic, non-oracle Turing machine can accept the following way:M A

1. Use tape cells to cycle through all possible nondeterministic sequences .nk r ∈ 0, 1{ }n
k

2. For each , simulate with deterministically until it writes a query (which gets stored on a r N x() r y

worktape of cells that counts against the space bound.)nk

3. Answer deterministically by solving TQBF in linear space, which here means space .y O nk

4. Then go back to step 2 until the next query , answer it per step 3, and repeat until the y'

computation path of with finishes. If it accepts, then accept ; else try the next , N xTQBF() r x r

and finally reject if no works.r

This all adds up to space used by , so belongs to . O nk M A PSPACE ☒

The subversive impact of comes from the following "meta-theorems":P = NPTQBF TQBF

Meta-Theorem 1: Every theorem about (un-)decidability and reductions and relationships among
deterministic and nondeterministic time and space that is taught in this course relativizes, meaning
that for any oracle language (or oracle function), the statements hold when all machines and B f

classes are defined with access to (or). For example, the relativized diagonal languageB f

D = ⟨M⟩ : M is a deterministic OTM and M does not accept ⟨M⟩B B

is not "decidable in " nor even "computably enumerable in "---the latter meaning there is no OTM B B Q

such that . The proof is essentially the same: . This is because the L Q = DB B Q ⟨Q⟩ = ??B()

proof only pays attention to the input/output behavior of the programs, taking no care about how they
process information internally---and might cheat! Thus, for any , we have:B

1. RE ≠ co REB - B

2. .RE ∩ co RE = RECB - B B

3. is complete for under . (The reductions do not A = ⟨M, w⟩ : w ∈ L MB
TM

B REB ≤ m
log

need to use the oracle---they are only translating syntax with no regard to the oracle feature.)

It is even possible to define a "relativized version" in which special formula variables reference 3SATB

the oracle's yes/no answers and prove by extending the Cook-Levin idea that it is complete for NPB

(again under reductions that do not need the oracle for themselves). This is broadly known as ≤ m
log

the "principle of relativization for elementary methods." But this means:

Meta-Theorem 2: Such elementary methods cannot prove .P ≠ NP

Proof: If they could, then by the principle of relativization, they would prove for all P ≠ NPB B

languages . But we just proved that . B P = NPTQBF TQBF ☒

More briefly put: the formal system behind CSE491/596 can prove its own inability to prove the
conjectured side of the greatest problem in the field (unless CSE491/596 is inconsistent). It cannot
prove the other side either, owing to the counterpart result:P = NP

Theorem: We can build a language such that .B P ≠ NPB B

[Proof Sketch: For any language , includes the languageB NPB

 . L = 0 : ∃y |y| = n ∧ y ∈ BB n ()[]

Now suppose we have any finite set and deterministic OTM that runs in polynomial time . We F M p n()

can choose a number such that and all strings have length . Now simulate n 2 > p n n () F < n MF

on input while keeping track of (i) all strings of length that queries, (ii) if 0n y n M 0F n M 0F n

queries a string of length , let be the length of the longest such string, else , and (iii) > n m m = n + 1

whether accepts . Note that all queries of length and higher get answered "no" since has no MF 0n n F
strings of those lengths.

• If accepts , then do nothing at length . We have but).M 0n n 0 ∉ Ln F 0 ∈ L Mn (F

• If rejects , then by , there must be some string that was not M 0n 2 > p nn () z ∈ 0, 1{ }n

queried. Add to .z F

• Either way, there must be some string that did not query either. Add to to z' ∈ 0, 1{ }m M z' F

make . F'

• Then the second step gave us and the third step did nothing to change 0 ∈ L ⧵ L Mn F' F'

that.

Moreover, because we added to , if we repeat this process with a new polynomial -time 1m F' p' n()

machine using oracle , all further alterations will occur at lengths and hence not disturb the M' F' > m

way we guaranteed that cannot agree with on the string . Thus we can repeat the process on M LF 0n

 without disturbing how we "digonalizes against" . As we continue, the sequence of finite sets M' M

builds a language . Since every polynomial-time OTM eventually gets tried and defeated, we get that B

the final does not belong to .]LB PB ☒

Note, by the way, that there is no contradiction or paradox in the fact of having yet P ≠ NPB B

 (with). The issue is what range of techniques can be used to prove it. The P = NPA A A = TQBF
great lack in the field as it stands is that no one has been able to formulate an incisive measure of how
much information has been incrementally internally "processed." But we have come to understand the
blockages---called barriers---better and better. Most of the ones after the "relativzation barrier" have to
do with randomness and its relation to computational hardness.

Randomized Complexity

Our last "big fact" in classical complexity theory is that random bits can be a time-saving resource.
How this can happen is best conveyed by an example.

Suppose you have three matrices for which it is claimed that . What is the n × n A, B, C AB = C
quickest way you can check this? You can:

• Multiply out and see if the answer equals . Uisng the basic matrix multiplication algorithm, AB C

this takes time . Using various forms of Strassen's Algorithm, one can push this down to O n3

, or down below with much bigger constants in the " .O n2.81... O n2.5 O"

• Try checking for multiple vectors . Per vector , this takes only time. If A ⋅ Bu = Cu u u O n2

you ever get then you know . But if you keep getting equal results for A ⋅ Bu ≠ Cu AB ≠ C

trial vectors , can you really be sure that ?u AB = C

The answer is that although you can never be certain, you can make the odds of " " being a AB = C

false positive very low by judiciously random choices of trial vectors , while still using only u nO 2

time overall. The tilde means "ignoring some power of ." Let's do this rigorously when the nlog
matrices are over the field mod-2, which is actually the worst case.

For any natural number , stands for the integers modulo . If is a prime number , then is m Zm m m p Zp

a field (so that one can divide as well as multiply) and we write it as . The field structure helps us Fp

prove the following result more easily.

Lemma: Suppose are matrices over such that . ThenA, B, C n × n Fp AB ≠ C

 . A Bu ≠ Cu ≥ Pr
u∈Fn

p
[(()]

p - 1

p

Proof: Write . Note that we are not going to calculate , because that would take the D = AB - C D

(standardly cubic) time for multiplying and that we are trying to avoid, but we are allowed to argue A B

based on its existence. By linearity, . So has at least one row with a ABu ≠ Cu ⟺ Du ≠ 0 D i

nonzero entry, and its use may give a nonzero entry in the -th place of the column vector . i v = Du

Note that

.v = D i, j ui ∑
n

j=1

[] j

Let be a column in which row has entry . For any vector , we can writej0 i c = D i, j ≠ 0[0] u

.v = cu + a where a = D i, j ui j0
∑

j≠j0
[] j

The key observation is that because is a field, for any , the values run through all Fp c ≠ 0 cuj0

p

possible values as runs through all possibilities. Regardless of the value of determined by the uj0
p a

rest of row and the rest of the vector , the values run through all possibilities with equal i u cu + aj0 p

probability. Hence the probability that is exactly . The probability of getting (which v ≠ 0i
p-1

p
v ≠ 0

could come from other nonzero entries too) is at least as great. The upshot is:

• If then you will never be deceived: you will always get equal values from and AB = C A Bu()

 and will correctly answer "yes, equal."Cu

• If and you try vectors at random, if you ever get then you will know AB ≠ C k u A Bu ≠ Cu()
to answer "no, unequal" with 100% confidence.

• If you get equality each time, you will answer "yes, equal" but there is a chance of error.
1

pk

If you consider, say, a 1-in- chance of being wrong as minuscule, then you only need to pick so that n3 k

, so will suffice. Presuming is fixed, this means trials will suffice. p > nk 3 k = n
3

plog
log p O n(log)

The resulting running time handily beats the time for multiplying out. Thus O n n = n2 log O 2 AB

we trade off sureness for time. ☒

For arithmetic modulo not prime, or without any modulus, the analysis is messier---but not only is the m

essence the same, but the asymptotic order of in terms of and the confidence target is much k n 𝜖 n()

the same---it didn't really depend on to begin with. p

Randomized Complexity Classes

The matrix example makes the probability easiest to figure because it is linear, but it does not show a
difference between "polynomial" and "exponential". This is enshrined in the definitions of the
complexity classes , , and co- . It is convenient to think of polynomial-time computable BPP RP RP

predicates where ranges over with equal length rather than say (with R x, y() y 0, 1{ }p n() |y| ≤ p n()

 as usual). Then is a sequence of coin-flips. n = |x| y p n()

Definition: A language belongs to if there is a polynomial and a polynomial-time decidable L BPP p

predicate such that for all and of length :R x, y() n x n

;x ∈ L ⟹ R x, y > 3 / 4Pr|y|=p n()[()]

.x ∉ L ⟹ R x, y < 1 / 4Pr|y|=p n()[()]

If the second probability is always then is in ; if instead the first probability is always then is 0 L RP 0 A

in co- ; together these cases are called having one-sided error. Note that the first probability being RP

always is equivalent to saying it is always for the complementary predicate , which is where 1 0 x, yR()

 and co- start to get confusing. The same ability to flip between and its negation tells right RP RP R

away that is closed under complements, which makes it less confusing. For , we can also BPP BPP

combine the conditions into one, namely

.L x = R x, y > 3 / 4Pr|y|=p n()[() ()]

But this is often less helpful than having the two separate probabilities. Note that if the second
probability is then is impossible when . It follows that having be true makes 0 R x, y() x ∉ A R x, y() y

a valid witness for , so we have proved the following:x ∈ A

Proposition: and co- . RP ⊆ NP RP ⊆ co - NP ☒

Of course , so whether a problem belongs to or to co- depends on L ∈ RP ⟺ ∈ co - RPL RP RP

which side one takes as the "yes" side. If you regard as the yes side and as the AB = C ABu = Cu

verifying predicate " ", then the matrix example has one-sided error of the "co- type", R ⟨A, B, C⟩, u() RP

meaning that if the answer is yes then you can never be bluffed into thinking the answer is no; but in a
true-negative case there is a tiny chance of getting a false positive (i.e., thinking because AB = C

every that you tried gave). You could say that the languageu A Bu = Cu()

 belongs to co- ,L = ⟨A, B, C⟩ : AB = C{ } RPTIME nO 2

but this notation gets ugly and hides the dependence between the error probability and the time
allowed for multiple trials. It is, however, even surer than for the matrix case:AB = C

Amplification Lemma: If with associated and , then for any polynomial we A ∈ BPP R x, y() p n() q n()

can build a polynomial-time decidable and associated polynomial such that for all ,R' x, z() p' n() x

;x ∈ A ⟹ R' x, z > 1 - 2Pr|z|=p' n()[()] -q n()

. x ∉ A ⟹ R' x, z < 2Pr|z|=p' n()[()] -q n()

Moreover, we can achieve this even if the original and only give a "non-negligible" advantage, R p

meaning that for some polynomial ,r n ≥ n()

;x ∈ A ⟹ R x, y > + Pr|y|=p n()[()]
1

2

1

r n()

.x ∉ A ⟹ R x, y < - Pr|y|=p n()[()]
1

2

1

r n()

Proof Sketch: Regard where and define to be the z = ⟨y , y , … , y ⟩1 2 q' n() q' n = O q n () (()) R' x, z()

majority vote of the polynomially-many trials . R x, y(j) ☒

There is a similar amplification lemma for one-sided error; in fact, the details of getting the exponentially
small error are simpler because you don't need majority vote. A philosophical point is that the the
theoretical software error can be reduced below the chance of hardware error---but when you see
something like https://www.wnycstudios.org/podcasts/radiolab/articles/bit-flip (which I heard on NPR
two weeks ago), maybe that's not so reassuring...

The definition of the quantum complexity class is similar, except that in place of getting such BQP y

that by rolling classical dice, we have a quantum circuit in place of and get the effect of R x, y() C R y
by measurements. Amplification and many other properties hold similarly; the main external difference
is that the factoring problem and some others belong to but (hopefully!) not to . Well, we BQP BPP

have to start by defining quantum circuits and algorithms in the last big section of this course. Here is a
diagram that adds these randomized classes to the "landscape":

P

NP co-NP
𝜃 > 45∘

A

B

means A ≤ B
p
m

REG

∃q ∀q

Note differences from
the unbounded
computability case:
NP intersect co-NP is
not known (or believed)
to equal P, and the
quantifiers are length-
bounded by a polynomial.

FACT

PRIMES

SAT, G3C TAUT

BPP BP
P

RP co-RP

BQP

BQP BQP

L
NL GAP

CVP

UGAP

PSPACE

TQBF

EXP

RE
REC co-RE

Known:
EXP ≠ P,
PSPACE ≠ NL
L ≠ REG

(and , etc.)EXP ≠ REC ≠ RE

