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First, to recap the PSPACE-completeness of TQBF from a bottom-up rather than top-down view, weFirst, to recap the PSPACE-completeness of TQBF from a bottom-up rather than top-down view, we  
begin with the relationbegin with the relation

𝛷𝛷 II,, JJ   ≡≡   I I ==  J J   ∨∨  I  I ⊢⊢  J J00(( )) (( )) MM

  
Recall that the latter notation means that ID Recall that the latter notation means that ID  can go to ID  can go to ID  by one step of the machine  by one step of the machine  (which the (which the  II JJ MM
proof doesn't care whether it is deterministic or nondeterministic).  Thus proof doesn't care whether it is deterministic or nondeterministic).  Thus  means that  means that  can go to can go to  𝛷𝛷 II,, JJ00(( )) II
 by  by at most one stepat most one step.  The predicate .  The predicate  actually stands for the bitwise equivalence of variables actually stands for the bitwise equivalence of variables  JJ I I ==  J J

 standing for the binary encoding of an ID  standing for the binary encoding of an ID  and  and  standing for  standing for ::ii ,, ii ,, …… ,, ii11 22 ss II jj ,, jj ,, …… ,, jj11 22 ss JJ
  

..ii   ∨∨   ∧∧     ∨∨  j j   ∧∧   ii   ∨∨   ∧∧     ∨∨  j j   ∧∧   ⋯⋯   ∧∧   ii   ∨∨   ∧∧     ∨∨  j j(( 11 jj⏨⏨11)) (( ii⏨⏨11 11)) (( 22 jj⏨⏨22)) (( ii⏨⏨22 22)) (( ss jj⏨⏨ss)) (( ii⏨⏨ss ss))

  
Here Here  is basically  is basically  times  times .  The predicate .  The predicate  is coded in much the same way as the is coded in much the same way as the  ss ss nn(( )) ||𝛤𝛤||loglog22 I I ⊢⊢  J JMM

conversion from Turing machines to Boolean circuits employed in the Cook-Levin proof; again the sizeconversion from Turing machines to Boolean circuits employed in the Cook-Levin proof; again the size  
of the formula needed is of the formula needed is ..    OO ss   ==  O O ss nn(( )) (( (( ))))
  
Now to express that an ID Now to express that an ID  can go to an ID  can go to an ID  in  in at mostat most  22 steps, it would be natural to write steps, it would be natural to writeII KK
  

..𝛹𝛹 II,, KK   ≡≡   ∃∃JJ ::𝛷𝛷 II,, JJ   ∧∧  𝛷 𝛷 JJ,, KK11(( )) (( )) 00(( )) 00(( ))
  
(The colon (The colon , by the way, means that the quantifier grabs everything to the end of the formula.)  Then, by the way, means that the quantifier grabs everything to the end of the formula.)  Then  ::
to express "at most to express "at most 44 steps" we would recurse: steps" we would recurse:
  

..𝛹𝛹 II,, KK   ==   ∃∃JJ22(( )) (( )) ::𝛹𝛹 II,, JJ   ∧∧  𝛹 𝛹 JJ,, KK11(( )) 11(( ))
  
But when we expand this out, it starts getting very bushy:But when we expand this out, it starts getting very bushy:
  

..𝛹𝛹 II,, KK   ==   ∃∃I'I',, JJ,, K'K' ::𝛷𝛷 II,, I'I'   ∧∧  𝛷 𝛷 I'I',, JJ   ∧∧  𝛷 𝛷 JJ,, K'K'   ∧∧  𝛷 𝛷 K'K',, KK22(( )) (( )) 00(( )) 00(( )) 00(( )) 00(( ))
  
For For  steps, we would have  steps, we would have  terms---exponentially many.  By using an alternation rather than keep terms---exponentially many.  By using an alternation rather than keep  22

rr 22rr

everything existential, we cut down the expansion everything existential, we cut down the expansion syntacticallysyntactically---but apparently not ---but apparently not semanticallysemantically  
(unless (unless , that is), even though it initially looks bushier:, that is), even though it initially looks bushier:P P ==  PSPACE PSPACE
  

..𝛷𝛷 II,, KK   ≡≡   ∃∃JJ ∀∀I'I',, J'J' ::   I' I' ==  I  I ∧∧  J'  J' ==  J J   ∨∨   I' I' ==  J  J ∧∧  J'  J' ==  K K   ⟶⟶  𝛷 𝛷 I'I',, J'J'11(( )) (( ))(( )) [[(( )) (( ))]] 00(( ))
  
[Interesting thought: while composing this lecture I realized that for the unrolling part it is better to[Interesting thought: while composing this lecture I realized that for the unrolling part it is better to  
change change  to read  to read  here: here:J'J' K'K'
  

..𝛷𝛷 II,, KK   ≡≡   ∃∃JJ ∀∀I'I',, K'K' ::   I' I' ==  I  I ∧∧  K'  K' ==  J J   ∨∨   I' I' ==  J  J ∧∧  K'  K' ==  K K   ⟶⟶  𝛷 𝛷 I'I',, K'K'11(( )) (( ))(( )) [[(( )) (( ))]] 00(( ))
]]
When we expand the implication (When we expand the implication ( ) and use De Morgan's Laws, the Boolean part) and use De Morgan's Laws, the Boolean part  a a ⟶⟶  b  b ≡≡   ¬¬a a ∨∨  b b
does become more complicated than CNF or DNF:does become more complicated than CNF or DNF:

  

  



  
..𝛷𝛷 II,, KK   ≡≡   ∃∃JJ ∀∀I'I',, K'K' ::   I' I' ≠≠  I  I ∨∨  K'  K' ≠≠  J J   ∧∧   I' I' ≠≠  J  J ∨∨  K'  K' ≠≠  K K   ∨∨  𝛷 𝛷 I'I',, K'K'11(( )) (( ))(( )) [[(( )) (( ))]] 00(( ))

  
The point is what happens when we step up to 4 (and then 8,16,...):The point is what happens when we step up to 4 (and then 8,16,...):
  

𝛷𝛷 II,, KK   ≡≡   ∃∃JJ ∀∀I'I',, K'K' ::   I' I' ≠≠  I  I ∨∨  K'  K' ≠≠  J J   ∧∧   I' I' ≠≠  J  J ∨∨  K'  K' ≠≠  K K   ∨∨  𝛷 𝛷 I'I',, K'K'22(( )) (( ))(( )) [[(( )) (( ))]] 11(( ))
  

≡≡   
∃∃JJ ∀∀I'I',, K'K' ∃∃J'J' ∀∀I''I'',, K''K'' ::(( ))(( ))(( ))(( ))

                        I' I' ≠≠  I  I ∨∨  K'  K' ≠≠  J J   ∧∧   I' I' ≠≠  J  J ∨∨  K'  K' ≠≠  K K     ∨∨[[(( )) (( ))]]
                        I'' I'' ≠≠  I'  I' ∨∨  K''  K'' ≠≠  J' J'   ∧∧   I'' I'' ≠≠  J'  J' ∨∨  K''  K'' ≠≠  K' K'   ∨∨  𝛷 𝛷 I''I'',, K''K'' ..[[(( )) (( ))]] 00(( ))

  
It is weird that the only predicates in the growing body are inequalities.  But the chess analogy in theIt is weird that the only predicates in the growing body are inequalities.  But the chess analogy in the  
previous lecture can help us understand this.  The one thing to realize is that the Turing machine is notprevious lecture can help us understand this.  The one thing to realize is that the Turing machine is not  
doing a checkmate where the opponent plays, but rather what is called a doing a checkmate where the opponent plays, but rather what is called a series-mate.series-mate.  For example,  For example,  
from https://www.ozproblems.com/problem-world/seriesmoverfrom https://www.ozproblems.com/problem-world/seriesmover

In normal chess this game would be a draw, but in series chess, White can give checkmate by makingIn normal chess this game would be a draw, but in series chess, White can give checkmate by making  
13 moves in a row: First the d-pawn moves up from d2 to d4 to block Black's bishop and allow the b-13 moves in a row: First the d-pawn moves up from d2 to d4 to block Black's bishop and allow the b-
pawn to move.  That pawn advances to b8 and promotes to a knight---not a queen since that wouldpawn to move.  That pawn advances to b8 and promotes to a knight---not a queen since that would  
give Black check and make further moves illegal.  That Knight then makes two hops to d7 and f6 togive Black check and make further moves illegal.  That Knight then makes two hops to d7 and f6 to  
block Black's bishop so the other pawn can move.  It, too, promotes to a knight, which finally hops fromblock Black's bishop so the other pawn can move.  It, too, promotes to a knight, which finally hops from  
d8 to f7 to give checkmate:d8 to f7 to give checkmate:
  
So what the formula So what the formula  intuitively means---and note that it becomes a sentence when you specify intuitively means---and note that it becomes a sentence when you specify  𝛷𝛷 II,, KK22(( ))

 as the starting configuration and  as the starting configuration and  as the goal configuration---is this: as the goal configuration---is this:II KK
  
[Either you didn't set up the pieces to make [Either you didn't set up the pieces to make  and  and  represent the before-and-after positions of one represent the before-and-after positions of one  I''I'' K''K''

of your 4 moves in the sequence]  of your 4 moves in the sequence]   [you did set up  [you did set up  and  and  correctly and the move is legal]. correctly and the move is legal].∨∨ I''I'' K''K''

  

  



  
Plus, in the chess case, a single predicate saying Plus, in the chess case, a single predicate saying BlackIsMatedBlackIsMated.  In the Turing machine case, there is.  In the Turing machine case, there is  
no need for an extra predicate because there is only one final ID no need for an extra predicate because there is only one final ID  and we initialize  and we initialize  to  to  and  and  to to  IIff KK IIff II

.  Well, 4 moves is not 13 moves, but maybe we can get a feel from the unrolling for 8 moves:.  Well, 4 moves is not 13 moves, but maybe we can get a feel from the unrolling for 8 moves:II xx00(( ))
  

𝛷𝛷 II,, KK   ≡≡   ∃∃JJ ∀∀I'I',, K'K' ∃∃J'J' ∀∀I''I'',, K''K'' ∃∃J''J'' ∀∀I'''I''',, K'''K''' ::33(( )) (( ))(( ))(( ))(( ))(( ))(( ))

                        I' I' ≠≠  I  I ∨∨  K'  K' ≠≠  J J   ∧∧   I' I' ≠≠  J  J ∨∨  K'  K' ≠≠  K K     ∨∨[[(( )) (( ))]]

                        I'' I'' ≠≠  I'  I' ∨∨  K''  K'' ≠≠  J' J'   ∧∧   I'' I'' ≠≠  J'  J' ∨∨  K''  K'' ≠≠  K' K'   ∨∨   [[(( )) (( ))]]

                        I''' I''' ≠≠  I''  I'' ∨∨  K'''  K''' ≠≠  J'' J''   ∧∧   I''' I''' ≠≠  J''  J'' ∨∨  K'''  K''' ≠≠  K'' K''   ∨∨  𝛷 𝛷 I'''I''',, K'''K''' ..[[(( )) (( ))]] 00(( ))
  
Where this gets dizzying is how the logic for (not) setting up pairs of IDs correctly all becomesWhere this gets dizzying is how the logic for (not) setting up pairs of IDs correctly all becomes  
hierarchical.  But once you get the pattern, the final formula hierarchical.  But once you get the pattern, the final formula  is easy to stream out.  Here is 16: is easy to stream out.  Here is 16:𝛷𝛷rr

  
𝛷𝛷 II,, KK   ≡≡   ∃∃JJ ∀∀I'I',, K'K' ∃∃J'J' ∀∀I''I'',, K''K'' ∃∃J''J'' ∀∀I'''I''',, K'''K''' ∃∃J'''J''' ∀∀I''''I'''',, K''''K'''' ::44(( )) (( ))(( ))(( ))(( ))(( ))(( ))(( ))(( ))

                        I' I' ≠≠  I  I ∨∨  K'  K' ≠≠  J J   ∧∧   I' I' ≠≠  J  J ∨∨  K'  K' ≠≠  K K     ∨∨[[(( )) (( ))]]

                        I'' I'' ≠≠  I'  I' ∨∨  K''  K'' ≠≠  J' J'   ∧∧   I'' I'' ≠≠  J'  J' ∨∨  K''  K'' ≠≠  K' K'   ∨∨   [[(( )) (( ))]]

                        I''' I''' ≠≠  I''  I'' ∨∨  K'''  K''' ≠≠  J'' J''   ∧∧   I''' I''' ≠≠  J''  J'' ∨∨  K'''  K''' ≠≠  K'' K''   ∨∨   [[(( )) (( ))]]

                        I'''' I'''' ≠≠  I'''  I''' ∨∨  K''''  K'''' ≠≠  J''' J'''   ∧∧   I'''' I'''' ≠≠  J'''  J''' ∨∨  K''''  K'''' ≠≠  K''' K'''   ∨∨  𝛷 𝛷 I''''I'''',, K''''K'''' ..[[(( )) (( ))]] 00(( ))
  
Since the base predicate allows equality, this says "Since the base predicate allows equality, this says "  can go in  can go in at mostat most 16 steps to  16 steps to " and so covers the" and so covers the  II KK
case of 13 steps. The ultimate point is that we can get up to case of 13 steps. The ultimate point is that we can get up to  steps with just  steps with just  rows.  Since each row rows.  Since each row  22rr rr
has has  occurrences of IDs and hence requires  occurrences of IDs and hence requires  variables to code, the whole formula size is about  variables to code, the whole formula size is about   88 8s8s 3rs3rs
for the quantifiers (which also tells that for the quantifiers (which also tells that  is the number of different variables, not counting those in  is the number of different variables, not counting those in   3rs3rs II
and and  which get initialized to the binary encoding of  which get initialized to the binary encoding of  and  and ), plus ), plus  for the rows, plus  for the rows, plus  for the for the  KK II xx00(( )) IIff 8rs8rs 2s2s

final invocation of final invocation of .  Since .  Since  and  and , we get size , we get size ..𝛷𝛷00 s s ==  O O ss nn(( (( )))) r r ==  O O ss nn(( (( )))) OO ss nn(( ))22

  
• • In the reduction to In the reduction to TQBFTQBF, ,  is  is for some for some , being the space used for , being the space used for  accepting the accepting the  ss nn(( )) OO nnkk kk MM

given language given language , so , so , which is still polynomial.  There are, which is still polynomial.  There are  A A ∈∈   PSPACEPSPACE ss nn   ==  O O nn(( ))22 2k2k

 binary variables, but each has a numerical index of size  binary variables, but each has a numerical index of size  which which  OO nn2k2k nn   ==  2k 2k nnloglog22
2k2k loglog

is is , so a log-space reduction can manage the indices while streaming.  Thus TQBF is, so a log-space reduction can manage the indices while streaming.  Thus TQBF is  OO nn((loglog ))

-complete under -complete under ..PSPACEPSPACE ≤≤ mm
loglog

• • For Savitch's Theorem, what happens is that whether the resulting QBF instance For Savitch's Theorem, what happens is that whether the resulting QBF instance  is true can is true can  𝛷𝛷rr

be decided be decided deterministicallydeterministically in space linear in its size, so space  in space linear in its size, so space .  Since .  Since  can come can come  OO ss nn(( ))22 AA

from an arbitrary from an arbitrary NNTM running in TM running in  space, this proves that (provided  space, this proves that (provided ))  ss nn(( )) ss nn   ≥≥   nn(( )) loglog

.  [Dropping the .  [Dropping the -notation in -notation in  is a is a  NSPACENSPACE ss nn   ⊆⊆   DSPACEDSPACE ss nn[[ (( ))]] (( ))22 OO DSPACEDSPACE ss nn(( ))22

permissible fib.]permissible fib.]
  
Some words to the wise:Some words to the wise:

1. 1. The savings of The savings of -to--to-  only works because a Turing machine (DTM or NTM) plays  only works because a Turing machine (DTM or NTM) plays solitairesolitaire..22rr rr
2. 2. If we have an opponent making moves too, then the space savings does not work over If we have an opponent making moves too, then the space savings does not work over  steps. steps.22rr

3. 3. But if our alternating-move games are limited to But if our alternating-move games are limited to  moves, say where  moves, say where  is polynomial in  is polynomial in , then, then  rr rr nn

  

  



we can get an we can get an -size formula directly just by the direct formulation shown at the outset in the-size formula directly just by the direct formulation shown at the outset in the  OO rr(( ))
previous lecture.previous lecture.

  
Theorem.Theorem. Chess extended to  Chess extended to  boards (with more of the same kinds of pieces, still just one king) boards (with more of the same kinds of pieces, still just one king)  n n ××  n n

is is -hard under -hard under .  It is .  It is -complete under-complete under in the presence of a "generalizedin the presence of a "generalized  PSPACEPSPACE ≤≤ mm
loglog

PSPACEPSPACE ≤≤ mm
loglog

50-move rule" limiting games to length 50-move rule" limiting games to length .  (But with no such limit it is---amazingly, IMHO---complete.  (But with no such limit it is---amazingly, IMHO---complete  nnOO 11(( ))

for for , i.e., exponential time , i.e., exponential time .  This is thought to imply that .  This is thought to imply that  chess without a polynomial chess without a polynomial  EXPEXP 22nnOO 11(( ))

n n ××  n n
length limit on games requires exponential space too.)length limit on games requires exponential space too.)
  
The further development is that many two- or multi-player games of strategy, not just chess, areThe further development is that many two- or multi-player games of strategy, not just chess, are  

-complete to solve (presuming a reasonable limit on the length of games).  Whereas -complete to solve (presuming a reasonable limit on the length of games).  Whereas --PSPACEPSPACE NPNP

completeness characterizes myriad solitary (or co-operative) optimization problems, completeness characterizes myriad solitary (or co-operative) optimization problems, --PSPACEPSPACE

completeness characterizes optimization in the face of competition.completeness characterizes optimization in the face of competition.
  
  
Another facet of Another facet of  as a "catchall" for polynomial-based complexity comes from  as a "catchall" for polynomial-based complexity comes from oracle Turingoracle Turing  PSPACEPSPACE

machinesmachines.  An .  An OTMOTM   is allowed instantaneous access to an external database in the form of an is allowed instantaneous access to an external database in the form of an  MM

oracle functionoracle function  .  At any point in its computation, .  At any point in its computation,  can write a can write a query string query string   on a on a  ff ::  𝛴 𝛴    𝛴 𝛴**
→→

** MM yy
special oracle tape and enter a special special oracle tape and enter a special query statequery state  .  In that state, the query tape is magically erased.  In that state, the query tape is magically erased  qq??

and replaced by the value and replaced by the value  with the head reading the first bit of it.  This idea was in Turing's original with the head reading the first bit of it.  This idea was in Turing's original  ff yy(( ))

paper, and anything paper, and anything  does is said to  does is said to Turing-reduceTuring-reduce to  to .  In particular, we write .  In particular, we write  for the for the  MM ff LL MMff

language of language of   with oraclewith oracle   or  or relative torelative to  ..MM ff ff
  
Here is my favorite small-scale example using a function.  Whether the product Here is my favorite small-scale example using a function.  Whether the product  of two  of two -bit integers-bit integers  xyxy nn
can be computed in can be computed in  time is a major open problem.  The algorithm learned in school takes time time is a major open problem.  The algorithm learned in school takes time  OO nn(( ))

order-order- .  .  Karatsuba's methodKaratsuba's method runs in time  runs in time  for any prescribed  for any prescribed  but the lower  but the lower , the, the  nn22 OO nn1+𝜖1+𝜖
𝜖 𝜖 >>  0 0 𝜖𝜖

higher the constant in the higher the constant in the , and this tradeoff issue affects the known , and this tradeoff issue affects the known  time methods even more. time methods even more.    OO nnOO(( ))
But if there were magically a linear-time algorithm for But if there were magically a linear-time algorithm for squaringsquaring a number, then we would get such an a number, then we would get such an  
algorithm for multiplication in general.algorithm for multiplication in general.    
  
TheoremTheorem: Except over fields of characteristic 2, integer multiplication Turing-reduces to the squaring: Except over fields of characteristic 2, integer multiplication Turing-reduces to the squaring  

function in linear time via the formula function in linear time via the formula ..xy xy ==   x x ++  y y   --  x x   --  y y
11

22
(( ))22 22 22

  
If If  is the 0-1 valued characteristic function of a language  is the 0-1 valued characteristic function of a language , then we just write , then we just write .  After any query .  After any query   ff AA MMAA yy
is submitted, is submitted,  is left reading either  is left reading either  for "no,  for "no, " or " or  for "yes" on its tape.  Many sources have for "yes" on its tape.  Many sources have  MM 00 y y ∉∉  A A 11

 go to one of two special answer states  go to one of two special answer states  or  or  instead---this difference is immaterial.  If  instead---this difference is immaterial.  If  is a class is a class  MM qqyy qqnn CC

of of machinesmachines, then we write , then we write  to be the class of languages  to be the class of languages  over all machines  over all machines ::    CCAA LL MMAA MM

• • PP   ==   LL MM ::  The DTM M runs in polynomial time  The DTM M runs in polynomial time with oracle Awith oracle AAA AA (( ))

• • NPNP   ==   AA   LL NN ::  The NTM N runs in polynomial time  The NTM N runs in polynomial time with oracle Awith oracle AAA (( ))

• • ..PSPACEPSPACE   ==   LLAA {{ ((MM ::  The DTM M runs in polynomial space  The DTM M runs in polynomial space with oracle Awith oracle AAA)) (( ))}}

  

  


