
CSE491/596 Lecture Fri. 12/01/23: Working Out Circuits and Measurements
 
There are basically three ways to "reckon" a quantum circuit computation:
 

1. Multiply the  matrices together---using sparse-matrix techniques as far as possible.  If Q × Q

 and you try this on a problem in the difference then the sparse-matrix techniques BQP ≠  P

must blow up at some (early) point.  The downside is that the exponential blowup is paid early; 
the upside is that once you pay it, the matrix multiplications don't get any worse, no matter how 
more complex the gates become.  This is often called a "Schrödinger-style" simulation.

2. Any product of -many  matrices can be written as a single big sum of -fold products.  s Q × Q s

For instance, if  are four such matrices and  is a length-  vector, thenA, B, C, D u Q

.ABCDu i  =  A i, j ⋅ B j, k ⋅C k, l ⋅D l, m ⋅ u m[ ] ∑
Q

j,k,l,m=1

[ ] [ ] [ ] [ ] [ ]

Every (nonzero) product of this form can be called a (legal) path through the system.  [As hinted 
before, in a quantum circuit,  will be at left---on an input , it will be the basis vector u x

 under the convention that s are used to initialize the output and ancilla lines-e  =  
x0

r+m x0r+m 0

--and  will be the first matrix from gate(s) in the circuit as you read left-to-right.  Thus the D

output will come out of , which is why it is best to visualize the path as coming in from the top A

of the column vector , going out at some row  (where  is nonzero---for a standard basis u m um

vector, there is only one such ), then coming in at column  of , choosing some row  to exit m m D l

(where the entry  is nonzero), then coming in at column  of , and so on until exiting at D l, m[ ] l C

the designated row  of .  This is the discrete form of Richard Feynman's sum-over-paths i A
formalism which he originally used to represent integrals over quantum fields (often with respect 
to infinite-dimensional Hilbert spaces).  The upside is that each individual path has size  O s( )

which is linear not exponential in the circuit size.  The downside is that the number of nonzero 
terms in the sum can be far worse than  and doubles each time a Hadamard gate (or other Q
nondeterministic gate) is added to the circuit.  

3. Find a way to formulate the matrix product so that the answer comes out of symbolic linear 
algebra---if possible!

 
For the textbook, I devised a way to combine the downsides of 1 and 2 by making an exponential-sized 
"maze diagram" up-front but evaluating it Feynman-style.  Well, the book only uses it for  1 ≤  Q ≤  3

and I found that the brilliant Dorit Aharonov had the same idea.  All the basic gate matrices have the 

property that all nonzero entries have the same magnitude---and when normalizing factors like  are 1

2

collected and set aside, the Hadamard, CNOT, Toffoli, and Pauli gates (ignoring the global  factor in ) i Y

give just entries  or , which become the only possible values of any path.  That makes it easier to +1 -1

sum the results of paths in a way that highlights the properties of amplification and interference in the 
"wave" view of what's going on.  The index values become "locations" in the wavefront m, l, k, j, i, …

as it flows for time , and since it is discrete, the text pictures packs of...well...spectral lab mice running s
through the maze.  

 

 



 
One nice thing is that you can read the mazes left-to-right, same as the circuits.  Here is the 

 entangling circuit example:H +  CNOT

 

 
No interference or amplification is involved here---the point is that if you enter at , then  and 00 00

 are the only places you can come out---and they have equal weight.  To see interference, you can 11

string the "maze gadgets" for two Hadamard gates together:
 

 
In linear-algebra terms, all that happened at lower right was  giving .  But the wave 1 ⋅ 1 +  - 1 ⋅ 1 0

interference being described that way is a real physical phenomenon.  Even more, according to 
Deutsch the two serial Hadamard gates branch into 4 universes, each with its own "Phil the mouse" 
(which can be a photon after going through a beam-splitter).  One of those universes has "Anti-Phil", 
who attacks a "Phil" that tries to occupy the same location (coming from a different universe) and they 
fight to mutual annihilation.  (I am skeptical about the reality of such "branches of the multiverse" 
because this way of viewing things seems to entail exponential collective effort by those universes.  
They seem to do our bidding in our one universe too complicitly.)
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Visualizing Small Quantum Systems
 
Can we build any interesting things with just a few qubits?  Yes, in fact.  We have already modeled 
graphs that way.  To state this formally:
 
Definition: A graph state circuit on  qubits consists of an -qubit Hadamard transform (i.e., ), n n H

⊗n

then some number of  and  gates, then a final .Z CZ H
⊗n

 
Each qubit is a node.  A -gate connecting qubits  and  gives an undirected edge between nodes  CZ i j i

and .  A -gate on line  denotes a self-loop at node .  The simplest nonempty graph has just one j Z i i
node with a self-loop:
 

 
We have seen the equation . How is this reflected when we visualize the quantum HZH = X

properties?  There is onlyone  change from the "maze" for two -gates canceling, which was:H

 

 
The change is to insert a stage that again has a  on the  basis value but no "crossover":-1 1

 

 
This time, when "Phil" starts running from  at left, the "mice" cancel at  and amplify at 0 z = 0

.  And on input  they output the basis state .  The result is Boolean NOT, i.e., .z = 1 x = 1 0 X
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[Footnotes: A basic outcome  for the circuit  on input  has amplitude , not .  z C x z UC x x UC z

Perhaps the diagrams should write the bra-form,  and  and so on, for  at right to emphasize 0 1 z
this.  The diagrams that follow show the "mice" in final positions---they will be reset in lecture.]
 
For graph state circuits of  nodes we need  qubits.  The Hadamard transform of two qubits is 2 2

diagrammed as at left and right.  It does not matter what order the two  gates go in.H

 

 
Note that the mouse running from  encounters no phase change, nor mice ending at  00 00

regardless of origin.  This simply expresses that the Hadamard transform (and the QFT too) have every 

entry  (divided by the normalizing constant ) in the row and column for .  We will focus +1 R = 2n 00

on the amplitude of getting  as output given  as input.  If  is the graph,  the graph-state 00 00 G CG

circuit, and  the unitary operator it computes, then the amplitude we want is .  UG 00 UG 00

 
The simplest two-node  has a single edge connecting the two nodes.  This introduces a single  G CZ

gate between the qubits standing for the nodes.
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If we take the two Hadamard gates away from line 1, then we have , which is H 2 CZ 1 2 H 2

equivalent to .  But with them, we get equal superpositions once again.  Most in particular, the CNOT

amplitude of  (= ) is nonzero.  [The lecture also noted how  is 00 UG 11 11 UG 00 1, 1, 1, -1
1

2
[ ]T

a fixed point of  and found some other fixed points of parts of the circuit, including one that was H
⊗2

equal up to multiplication by the unit scalar .]-1

 
Now let's try a graph that adds a loop at each node.  We can call it the "Q-Tip" graph:

 
The  phase shifts for the  gates go on the basis states that have a  on line 1 or 2, respectively.  -1 Z 1

Now the amplitude value  is negative.  Its sign does not affect the probability and the state 00 UG 00

still gives an equal superposition.
 
It does not matter whether we put the  gates "before" or "after" the .  The diagonal matrices all Z CZ

commute, and this is clear from how the paths go straight across without branching.  We could simply 
make the whole graph into one diagonal gate with phase shifts that multiply the  factors along each -1

row.  A related thing to note is that if we repeat an edge or loop, then the two cancel completely.  It's as 
if we have a graph with edges defined by even-odd parity rather than number.
Now let's try a three-node graph, the triangle:
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For computing the amplitude  it is not necessary to follow the "mice" through the 000 UG 000

Hadamard parts of the "maze".  The mice entering the graph part from  are all positive, and x = 000

the mice going to  will not change color once they leave the graph.  So we need only track z = 000

the middle portion and count how many mice are  and how many are .  For the triangle graph, the + -

answer is: four of each.  They cancel.  So .   =  0000 UG 000
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