How Does Nature Compute? How Does Nature Concatenate? Stipps: Trivial operation: a.b = ab X.Y = XY Notures was (lihear) operators A.B = {X.Y: XEA a YEB? that we represent as matrices (over a standard basic).

When you think of matrices and vectors, the first idea that pops into mind is the ordinary matrix product AB of an $\ell \times m$ and an $m \times n$ matrix. But this is "lossy," whereas concatenation must be lossless (except possibly for memory of the place where the strings got concatenated). Instead, Nature uses tensor product, which applies also to vectors and doesn't need the "shapes" of the operands to agree.

 $\frac{\text{Main Point: Matrix multiplication of Product: A \otimes B = a_{11} B a_{12} B - a_{1n} B}{\text{Instead, it is Tensor Product: A \otimes B = a_{11} B a_{12} B - a_{1n} B} d_{11} B a_{12} B - a_{1n} B} d_{11} B a_{12} B - a_{1n} B} d_{11} B a_{12} B - a_{1n} B}{d_{11} B a_{12} - a_{1n}} d_{11} B a_{12} B - a_{1n} B} d_{11} B a_{12} B - a_{1n} B}{d_{11} B a_{12} B - a_{1n} B} d_{11} B a_{12} B - a_{1n} B}{d_{11} B a_{12} B - a_{1n} B} d_{11} B a_{12} B - a_{1n} B} d_{11} B a_{12} B - a_{1n} B d_{11} B d_{12} B - a_{1n} B d_{11} B d_{12} B d_{12} B - a_{1n} B d_{11} B d_{12} B d_{12} B - a_{1n} B d_{11} B d_{12} B d_{12}$

If *A* is $\ell \times m$ and *B* is $n \times r$ then $A \otimes B$ is $\ell n \times mr$, so the dimensions can be anything. In particular, *A* and *B* can both be column vectors with m = r = 1, whereupon $A \otimes B$ is a column vector of length ℓn .

The entries of $H^{\otimes n}$ are indexed by binary strings x, y of length n. Take the Boolean inner product mod 2 of x and y. If it is 0, then $H^{\otimes n}[x, y] = 1$, but if it is 1, then $H^{\otimes n}[x, y] = -1$.

E.g. $\langle 00, y \rangle = 0$ for any y, so the row for 00 is all 1s. But $\langle 01, 01 \rangle = 1$, so the entry $H^{\otimes 2}[01, 01] = -1$. And $\langle 11, 11 \rangle = 2 = 0 \pmod{2}$, so $H^{\otimes 2}[11, 11] = +1$ back again.

This rule defines $H^{\otimes n}$ for any n as an $N \times N$ matrix. On paper that is exponential size, but in a **quantum circuit diagram** on n qubits, it is O(n) gates. Is it linear effort for Nature to compute? Because the computation is unitary, hence **reversible** and ideally accompanied by zero entropy, it might be zero effort. Or, because it represents splitting beams of particles, possibly serially, it might be exponential effort after all.

Why is this <u>concatenation</u> ? Consider $A \otimes B \otimes C$ where $A \stackrel{\circ}{=} \begin{bmatrix} a_{11} & a_{12} \\ d_{21} & q_{22} \end{bmatrix} B \stackrel{\circ}{=} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} C \stackrel{\circ}{=} \begin{bmatrix} c_n & c_{12} \\ c_1 & c_{22} \end{bmatrix}$ The resulting $8 \times \delta$ matrix - call it D -gives $D[X_1 X_2 X_3, Y_1 : T_2 Y_3] = A[X_1, Y_1] \cdot B[B_2, Y_2] \cdot C[X_8, Y_3]$
$a_{11} = b_{11} \begin{bmatrix} c_{11} & c_{12} \\ c_{11} & c_{12} \\ c_{11} & c_{12} \end{bmatrix} b_{21} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{23} \end{bmatrix} a_{12} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

At the end I showed the applet for quantum circuits by Davy Wybiral:

← → C 🔒 wybiral.github.io/quantum/	
Workspace Circuit	
H X Y Z S T H - X R2 R4 R8 QFT SRN	50.0000% * 50.0000% +
0> H + + + + + + + + + + + + + + + + + +	

There is also IBM's recently-upgraded qwidget:

→ C iii quantum-computing.ibm.com/composer/new-experiment	
IBM Quantum Experience	Feedback
File Edit Inspect View Share Help	Sign in to run on quantum hardw
Circuits / Untitled circuit	> Code
H ⊕ → → ↓ T S Z T' S' P RZ ● ID) ∧ if ↓ √X √X' Y RX RY ① :	Docs
U RXX RZZ + Add qe	Get started with Circuit Composer blocks to build quantum circuits real quantum hardware.