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• A qubit in state , also write as  (Dirac notation):


     


• A qubit in state , also write as :


     


• A qubit in a superposition state is 


described by: 


     with 


also write as . 

0 |0⟩

e0 = (1
0)

1 |1⟩

e1 = (0
1)

(a
b) |a |2 + |b |2 = 1

a |0⟩ + b |1⟩

Recall: qubits and Dirac notation
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• Matrix multiplication:


• Tensor products:


Recall: basic arithmetic operations 

(a b
c d) (1

0) = (a
c)

(a b
c d) ⊗ (1

0) =
a (1

0) b (1
0)

c (1
0) d (1

0)
=

a b
0 0
c d
0 0



 Examples:


Recall: from a single bit to multiple bits 

|00⟩ = (1
0) ⊗ (1

0) =

1
0
0
0

|111⟩ = (0
1) ⊗ (0

1) ⊗ (0
1) =

0
0
0
0
0
0
0
1

|01⟩ = (1
0) ⊗ (0

1) =

0
1
0
0



• Hadamard matrix:


Recall: unitary matrices (operators / gates)

H =
1

2 (1 1
1 −1)

X = (0 1
1 0)

Z = (1 0
0 −1)

Y = (0 −i
i 0 )

• Pauli matrices

(0 1
1 0) (0 1

1 0) = (1 0
0 1)

(1 0
0 −1) (1 0

0 −1) = (1 0
0 1)

(0 −i
i 0 ) (0 −i

i 0 ) = (1 0
0 1)

I = (1 0
0 1)• Identity matrix:
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Bloch sphere

Definition (Equivalent) 

Two quantum states  are equivalent if there is a unit 
complex number  such that 


.


ϕ, ϕ′￼

c
ϕ′￼ = cϕ

• The principle is that a unit complex number is only a "global phase 
difference" which is physically arbitrary and doesn't matter. 



Bloch sphere

Example:


 is equivalent to 


 is equivalent to ;  is equivalent to 

1

2
(−1,1)

1

2
(1, − 1)

ie1 e1 −ie0 e0

Definition (Equivalent) 

Two quantum states  are equivalent if there is a unit 
complex number  such that 


.


ϕ, ϕ′￼

c
ϕ′￼ = cϕ

• The principle is that a unit complex number is only a "global phase 
difference" which is physically arbitrary and doesn't matter. 



Bloch sphere

Complex conjugate of :





is also a unit complex number. 


Since , then . 

c

1
c

=
1

a + bi
=

a − bi
(a + bi)(a − bi)

=
a − bi

a2 + b2
=

a − bi
1

= a − bi = c̄

ϕ = c̄ϕ′￼ ϕ′￼= cϕ

Definition (Equivalent) 

Two quantum states  are equivalent if there is a unit 
complex number  such that 


.


ϕ, ϕ′￼

c
ϕ′￼ = cϕ

[Equivalence relation]

transitive, reflexive, and symmetric



Bloch sphere

Definition (Equivalent) 

Two quantum states  are equivalent if there is a unit 
complex number  such that 


.


ϕ, ϕ′￼

c
ϕ′￼ = cϕ

Unit complex number in polar coordinate: c = eiγ .
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complex number  such that 
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Unit complex number in polar coordinate: c = eiγ .

A quantum state ϕ in polar coordinates: (aeiα, beiβ) .



Bloch sphere

Definition (Equivalent) 

Two quantum states  are equivalent if there is a unit 
complex number  such that 
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ϕ, ϕ′￼

c
ϕ′￼ = cϕ

Unit complex number in polar coordinate: c = eiγ .

A quantum state ϕ in polar coordinates: (aeiα, beiβ) .

Choose γ = − α then: cϕ = (a, beiφ) with φ = β − α .



Bloch sphere

Definition (Equivalent) 

Two quantum states  are equivalent if there is a unit 
complex number  such that 


.


ϕ, ϕ′￼

c
ϕ′￼ = cϕ

Unit complex number in polar coordinate: c = eiγ .

A quantum state ϕ in polar coordinates: (aeiα, beiβ) .

Choose γ = − α then: cϕ = (a, beiφ) with φ = β − α .

Since a2 + b2 = 1, b is fixed once we specify a .



Bloch sphere

Definition (Equivalent) 

Two quantum states  are equivalent if there is a unit 
complex number  such that 


.


ϕ, ϕ′￼

c
ϕ′￼ = cϕ

Unit complex number in polar coordinate: c = eiγ .

A quantum state ϕ in polar coordinates: (aeiα, beiβ) .

Choose γ = − α then: cϕ = (a, beiφ) with φ = β − α .

Since a2 + b2 = 1, b is fixed once we specify a .

 So a and φ are enough to specify a state.



Bloch sphere

 So a and φ are enough to specify a state.

: the longitude of point

 he latitude of point

φ
θ :



Comparing Cartesian and Bloch
(0

1)

(−1
0 )

( 0
−1)

(1
0)

1

2
1

2

1

2

− 1

2

Cartesian:  is the probability of a measurement giving 0
                  the probability of getting 1
                  Right angles are orthogonal
Bloch: the latitude is the probability of getting 0
           the north pole has latitude 1 and the south pole has latitude 0  
           Opposite poles are orthogonal.

cos2 θ
sin2 θ

θ



Comparing Cartesian and Bloch
(0

1)

(−1
0 )

( 0
−1)

(1
0)

1

2
1

2

1

2

− 1

2

Bloch: All points at the Bloch equator have equal probability of 0 and 1. 
           and  are different quantum states with same outcome probabilities.  

           state  is not considered to be a different state from .

| + ⟩ | − ⟩
1

2 (−1
1 ) | − ⟩



Two More Matrices (operators / gates)

T = (1 0
0 eiπ/4)

S = (1 0
0 eiπ/2) = (1 0

0 i)

https://wybiral.github.io/quantum/

S4 = I

T8 = I



Two More Matrices (operators / gates)

T = (1 0
0 eiπ/4)

S = (1 0
0 eiπ/2) = (1 0

0 i)

https://wybiral.github.io/quantum/

S4 = I

T8 = I

(1 0
0 eiθ) -angled phase gatesθθ = π/2, π/4, π/8, . . .
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Two qubits: basis states  
One qubit state: |0⟩, |1⟩

  
e0 = (1
0) e1 = (0

1)



Two qubits: basis states  
One qubit state: |0⟩, |1⟩

  
e0 = (1
0) e1 = (0

1)
Two qubits state:   or |00⟩, |01⟩, |10⟩, |11⟩ e00, e01, e10, e11

                                                 
e00 =

1
0
0
0

e01 =

0
1
0
0

e10 =

0
0
1
0

e11 =

0
0
0
1

                                   
e00 = e0 ⊗ e0 e01 = e0 ⊗ e1 e10 = e1 ⊗ e0 e11 = e1 ⊗ e1

                
|00⟩ = |0⟩ ⊗ |0⟩ |01⟩ = |0⟩ ⊗ |1⟩ |10⟩ = |1⟩ ⊗ |0⟩ |11⟩ = |1⟩ ⊗ |1⟩



Two qubits, more states  
Two qubits state:   or |00⟩, |01⟩, |10⟩, |11⟩ e00, e01, e10, e11

                                                 
e00 =

1
0
0
0

e01 =

0
1
0
0

e10 =

0
0
1
0

e11 =

0
0
0
1



Two qubits, more states  
Two qubits state:   or |00⟩, |01⟩, |10⟩, |11⟩ e00, e01, e10, e11

                                                 
e00 =

1
0
0
0

e01 =

0
1
0
0

e10 =

0
0
1
0

e11 =

0
0
0
1

Another set of basis states:  from “plus” and “minus” states

     | + + ⟩ = | + ⟩ ⊗ | + ⟩ =
1
2 (1

1) ⊗ (1
1) =

|00⟩ + |01⟩ + |10⟩ + |11⟩
2

     | + − ⟩ = | + ⟩ ⊗ | − ⟩ =
1
2 (1

1) ⊗ ( 1
−1) =

|00⟩ − |01⟩ + |10⟩ − |11⟩
2

     | − + ⟩ = | − ⟩ ⊗ | + ⟩ =
1
2 ( 1

−1) ⊗ (1
1) =

|00⟩ + |01⟩ − |10⟩ − |11⟩
2

     | − − ⟩ = | − ⟩ ⊗ | − ⟩ =
1
2 ( 1

−1) ⊗ ( 1
−1) =

|00⟩ − |01⟩ − |10⟩ + |11⟩
2



Two qubits, more states  
More two qubits states: “plus” and “minus” states

     | + + ⟩ = | + ⟩ ⊗ | + ⟩ =
1
2 (1

1) ⊗ (1
1) =

|00⟩ + |01⟩ + |10⟩ + |11⟩
2

     | + − ⟩ = | + ⟩ ⊗ | − ⟩ =
1
2 (1

1) ⊗ ( 1
−1) =

|00⟩ − |01⟩ + |10⟩ − |11⟩
2

     | − + ⟩ = | − ⟩ ⊗ | + ⟩ =
1
2 ( 1

−1) ⊗ (1
1) =

|00⟩ + |01⟩ − |10⟩ − |11⟩
2

     | − − ⟩ = | − ⟩ ⊗ | − ⟩ =
1
2 ( 1

−1) ⊗ ( 1
−1) =

|00⟩ − |01⟩ − |10⟩ + |11⟩
2



Two qubits, more states  
More two qubits states: “plus” and “minus” states

     | + + ⟩ = | + ⟩ ⊗ | + ⟩ =
1
2 (1

1) ⊗ (1
1) =

|00⟩ + |01⟩ + |10⟩ + |11⟩
2

     | + − ⟩ = | + ⟩ ⊗ | − ⟩ =
1
2 (1

1) ⊗ ( 1
−1) =

|00⟩ − |01⟩ + |10⟩ − |11⟩
2

     | − + ⟩ = | − ⟩ ⊗ | + ⟩ =
1
2 ( 1

−1) ⊗ (1
1) =

|00⟩ + |01⟩ − |10⟩ − |11⟩
2

     | − − ⟩ = | − ⟩ ⊗ | − ⟩ =
1
2 ( 1

−1) ⊗ ( 1
−1) =

|00⟩ − |01⟩ − |10⟩ + |11⟩
2

Orthonormal basis: Linearly independent and mutually orthogonal vectors.



Two qubits, more states  
More two qubits states: “plus” and “minus” states

     | + + ⟩ = | + ⟩ ⊗ | + ⟩ =
1
2 (1

1) ⊗ (1
1) =

|00⟩ + |01⟩ + |10⟩ + |11⟩
2

     | + − ⟩ = | + ⟩ ⊗ | − ⟩ =
1
2 (1

1) ⊗ ( 1
−1) =

|00⟩ − |01⟩ + |10⟩ − |11⟩
2

     | − + ⟩ = | − ⟩ ⊗ | + ⟩ =
1
2 ( 1

−1) ⊗ (1
1) =

|00⟩ + |01⟩ − |10⟩ − |11⟩
2

     | − − ⟩ = | − ⟩ ⊗ | − ⟩ =
1
2 ( 1

−1) ⊗ ( 1
−1) =

|00⟩ − |01⟩ − |10⟩ + |11⟩
2

Orthonormal basis: Linearly independent and mutually orthogonal vectors.

1
2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

=
1

2 (1 1
1 −1) ⊗

1

2 (1 1
1 −1) = H ⊗ H = H⊗2



-qubit gate: from single-qubit gates2

H =
1

2 (1 1
1 −1)

H ⊗ I

H

H

I ⊗ H

H H

H

H ⊗ H

Example: (H ⊗ I) |01⟩ = (H |0⟩) ⊗ (I |1⟩) = | + ⟩ ⊗ |1⟩

Quantum circuit: go left-to-right, like music on a staff, 
but we apply matrices to vectors going right-to-left. 

Example: H |0⟩ = | + ⟩



-qubit gate: CNOT gate2

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Control

Target

If the first qubit is , then the whole gate acts as the identity;


If the first qubit is , then the basis value of the second qubits flipped (Not gate X) 

0

1

Controlled-NOT

CNOT
a
b
c
d

=

a
b
d
c

Example:

00 01

00

01

10 11

10

11



What’s the output? 

Example: H gate and CNOT gate

x1

x2

H z1

z2

(?)

Control

Target

z1 = Hx1

z2 = x2 ⊕ z1
Symbolic outputs



Example: H gate and CNOT gate

x1

x2

H z1

z2

(?)

Control

Target

For example, if ,|x1x2⟩ = e00

z

I



Example: H gate and CNOT gate

x1

x2

H z1

z2

(?)

Control

Target

For example, if ,|x1x2⟩ = e00

z

H ⊗ I =
1

2 (1 1
1 −1) ⊗ (1 0

0 1) =
1

2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

I



Example: H gate and CNOT gate

x1

x2

H z1

z2

(?)

Control

Target

For example, if ,|x1x2⟩ = e00

z = (H ⊗ I)e00 =
1

2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

1
0
0
0

=
1

2

1
0
1
0

=
1

2
| + ⟩ ⊗ |0⟩

z

H ⊗ I =
1

2 (1 1
1 −1) ⊗ (1 0

0 1) =
1

2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

I



Example: H gate and CNOT gate

x1

x2

H z1

z2

(?)

Control

Target

z =
1

2

1
0
1
0

=
1

2
| + ⟩ ⊗ |0⟩

z′￼

z′￼= CNOT z =
1

2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
0
1
0

=
1

2

1
0
0
1

z

For example, if ,|x1x2⟩ = e00



Example: H gate and CNOT gate

x1

x2

H z1

z2

(?)

Control

Target

z =
1

2

1
0
1
0

=
1

2
| + ⟩ ⊗ |0⟩

z′￼

z′￼= CNOT z =
1

2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
0
1
0

=
1

2

1
0
0
1

=
1

2
( |00⟩ + |11⟩)

z

For example, if ,|x1x2⟩ = e00



Example: H gate and CNOT gate

x1

x2

H z1

z2

(?)

Control

Target

z =
1

2

1
0
1
0

=
1

2
| + ⟩ ⊗ |0⟩

z′￼

z′￼= CNOT z =
1

2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
0
1
0

=
1

2

1
0
0
1

Separatable

Entangled=
1

2
( |00⟩ + |11⟩)

z

For example, if ,|x1x2⟩ = e00



Example: H gate and CNOT gate

x1

x2

H z1

z2

(?)

Control

Target

z′￼
z

https://algassert.com/quirk#circuit=%7B%22cols%22:%5B%5D%7D

Definition: A quantum state is entangled if it cannot be written as a 
tensor product of smaller states.

z′￼= =
1

2
( |00⟩ + |11⟩) Entangled

https://wybiral.github.io/quantum/



-qubit gate: CZ gate2

x1

x2

z1

z2

Controlled-Z

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Control

Target

If both bits are , flip the sign;

Else, do nothing

1



-qubit gate: CZ gate2

x1

x2

z1

z2

Controlled-Z

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Control

Target

CZ
0
1
0
0

=

0
1
0
0

Example:

CZ
0
0
0
1

=

0
0
0

−1

CZ |01⟩ = |01⟩ CZ |11⟩ = |1⟩ ⊗ ( − |1⟩)
= |1⟩ ⊗ eiπ |1⟩If both bits are , flip the sign;


Else, do nothing
1



-qubit gate: CZ gate2

x1

x2

z1

z2

Controlled-Z

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Control

Target

CZ
0
1
0
0

=

0
1
0
0

Example:

CZ
0
0
0
1

=

0
0
0

−1

CZ |01⟩ = |01⟩ CZ |11⟩ = |1⟩ ⊗ ( − |1⟩)
= |1⟩ ⊗ eiπ |1⟩If both bits are , flip the sign;


Else, do nothing
1

Symmetric

Target

Control



Other -qubit (symmetric) gates: CA gate2

CA = ( I 0
0 A) 2r × 2r matrix for general r × r matrix A



Other -qubit (symmetric) gates: CA gate2

CA = ( I 0
0 A) 2r × 2r matrix for general r × r matrix A

CS =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

Example:

CS
0
1
0
0

=

0
1
0
0

CS
0
0
0
1

=

0
0
0
i

CS |01⟩ = |01⟩ CS |11⟩ = |1⟩ ⊗ (i |1⟩)
= |1⟩ ⊗ eiπ/2 |1⟩



Other -qubit (symmetric) gates: CA gate2

CA = ( I 0
0 A) 2r × 2r matrix for general r × r matrix A

CS =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

Example:

CS
0
1
0
0

=

0
1
0
0

CS
0
0
0
1

=

0
0
0
i

CS |01⟩ = |01⟩ CS |11⟩ = |1⟩ ⊗ (i |1⟩)
= |1⟩ ⊗ eiπ/2 |1⟩

CT =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiπ/4

CT
0
1
0
0

=

0
1
0
0

CT
0
0
0
1

=

0
0
0

eiπ/4

CT |01⟩ = |01⟩ CT |11⟩ = |1⟩ ⊗ eiπ/4 |1⟩



-qubit gate: SWAP gate2

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Control

Target

SWAP gate



-qubit gate: SWAP gate2

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Control

Target

SWAP gate

SWAP
0
1
0
0

=

0
0
1
0

Example:

SWAP
0
0
1
0

=

0
1
0
0

SWAP |01⟩ = |10⟩ SWAP |10⟩ = |01⟩
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• Three Qubits and More



More qubits, basic basis  

Three qubits state:  |000⟩, |001⟩, |010⟩, . . .

Four qubits state:  |0000⟩, |0001⟩, |0010⟩, . . .

 qubits state:   basic or standard states n 2n



-qubit gate: Toffoli gate (Tof)3
Toffoli gate

If the first two qubit are , then the basis value of the third qubits flipped


Otherwise, the whole gate acts as the identity;

1



-qubit gate: toffoli gate (Tof)3

Tof =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

Toffoli gate



-qubit gate: toffoli gate (Tof)3

Tof =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

Toffoli gate

110 111

110

111

000 001 010 011 100 101

000

001

010

011

101

100



-qubit gate: toffoli gate (Tof)3

Tof =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

Toffoli gate

Tof

a
b
c
d
e
f
g
h

=

a
b
c
d
e
f
h
g

Example:110 111

110

111

000 001 010 011 100 101

000

001

010

011

101

100



-qubit gate: Toffoli gate (Tof)3

Control

Target

Toffoli gate

Control

x1

x3

z1

z3

x2 z2

What’s the output? 

z1 = x1

z2 = x2

z3 = x3 ⊕ (x1 ∧ x2)

Symbolic outputs



-qubit gate: Toffoli gate (Tof)3

Control

Target

Toffoli gate

Control

x1

|1⟩

z1

z3

x2 z2

What’s the output? 

z1 = x1

z2 = x2

z3 = |1⟩ ⊕ (x1 ∧ x2) = ¬(x1 ∧ x2) = NAND(x1, x2)



Theorem 

For fully time-constructible  between linear and exponential,




t(n)
DTIME[t(n)] ⊆ DQ[Õ(t(n))]



Hadamard is the only quantum-nondeterministic gate one needs 
to add in order to extend the notion of classical-feasible to quantum-
feasible.   

The main point of the next two lectures, focusing on chapters 7 and 
8 of the text, is to show the extra powers that this gives.



More about Toffoli gate 
Toffoli gate

=

H S

H Z H

Z S

H Z H

S H

Only need to look at the effect on basis states.

H =
1

2 (1 1
1 −1) S = (1 0

0 i) Z = (1 0
0 −1)



More about Toffoli gate 
Toffoli gate

=

H S

H Z H

Z S

H Z H

S H

S = (1 0
0 i) Z = (1 0

0 −1)H =
1

2 (1 1
1 −1)

Case 1: x1 = 0

H S

H I H

Z S

H I H

I H



More about Toffoli gate 
Toffoli gate

=

H S

H Z H
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More about Toffoli gate 
Toffoli gate

=

H S

H Z H

Z S

H Z H

S H

S = (1 0
0 i) Z = (1 0

0 −1)H =
1

2 (1 1
1 −1)

Case 2: x1 = 1

H S H
x2 = 1

S

HSSH = HZH = (0 1
1 0) = X Flip x3



Quantum computation 

Quantum algorithm applies a series of unitary matrices to a start vector.

• Keep the number  of arguments for any operation to a constant!


• Any unitary matrix  of dimension  with  is feasible. 

• Gates involving with more qubits is OK if they can be built up out 

of small gates

k

B 2k k = 1, 2, 3



Quantum computation 

Definition 

A quantum computation  on  qubits is feasible provided ,




Where each  is feasible operation, and  and  are bounded by 
a polynomial in the designated number  of input qubits. 

C s
C = UtUt−1 . . . U1

Ui s t
n



Example: H gates

x1

x3

x2

x4

z1

z3

z2

z4

H

H

H

H

H =
1

2 (1 1
1 −1)

H⊗4 =
1
4 (1 1

1 −1) ⊗ (1 1
1 −1) ⊗ (1 1

1 −1) ⊗ (1 1
1 −1)

A 16 × 16 matrix



Example: H gates and CZ gates  

x1

x3

x2

x4

z1

z3

z2

z4

H

H

H

H

A 16 × 16 matrix multiple a 16 × 16 matrix

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

CZ ⊗ I ⊗ I



Example: H gates and CZ gates  

x1

x3

x2

x4

z1

z3

z2

z4

H

H

H

H

A 16 × 16 matrix multiple four 16 × 16 matrix

CZ ⊗ I ⊗ I

CZ ⊗ I ⊗ I

CZ ⊗ I ⊗ I

CZ ⊗ I ⊗ I



Example: H gates and CZ gates    

x1

x3

x2

x4

z1

z3

z2

z4

H

H

H

H

A 16 × 16 matrix multiple four 16 × 16 matrix

H

H

H

H

H⊗4 =
1
4 (1 1

1 −1) ⊗ (1 1
1 −1) ⊗ (1 1

1 −1) ⊗ (1 1
1 −1)

multiple a 16 × 16 matrix



Example: quantum Fourier transform (QFT)  

The -qubit quantum Fourier transform (QFT) can be built 
up of  smaller gates. 

n
O(n2)

x1

x3

x2

x4

z1

z3

z2

z4H

S H

T S H

Tπ/8 T S H

Example: n = 4, N = 24

Tπ/8 = (1 0
0 w′￼) with w′￼= eiπ/8



Thank you!


