
CSE491/596 Lecture 12/08/23: Simon's Algorithm, Concluded
 
Lecture began with pen on paper sketching the whole circuit:

 
To do the analysis, we represent the quantum state  just before the measurement, to see which b

possible outcomes  from the measurement have nonzero amplitude.  If  is not in the range of , xy y f

then the terms  in the expression for the amplitude  are all zero, so  is zero regardless a ty( ) b xy( ) b xy( )

of .  For  in the range of , in the case where  is -to- , this means there are unique strings  and x y f f 2 1 z1

 such that:  and .  Then the body of  simplifies as shown below:z2 f z = f z = y( 1) ( 2) z ⊕ z = s1 2 b xy( )

 

 

 



 

 

 

 



To finish the whole argument: If  is 1-to-1, so that , then every  makes .  The f s = 0n x x • s =  0

analysis kicks in to say that if we currently have at most  linearly independent equations, then with n - 1

at least 50-50 probability we get one more from the measurement, which gives a random vector 
.  Once we know we have  linearly independent equations---which we can tell in x ∈ 0, 1{ }n n

deterministic polynomial time by Gaussian elimination---then we know we must be in the 1-to-1 case.  
The only possible error is if we kepy on unluckily getting "tails" meaning a dependent equation.
 
 If  is 2-to-1, then we will never get  independent equations.  We want to get  of them, so that f n n - 1

we can deterministically solve for  uniquely.  By similar reasoning, the worst case is when one has s

 independent equations, whereupon the chance of getting a new one from re-running the circuit n - 2

and re-sampling the measurement is 50-50.  Doing  or so trials gives only an exponentially small 3n

chance of never getting the st equation.  And when you get it, there is only an exponentially n - 1( )

small chace of being wrongly stuck on  when the truth is  being 1-to-1.  Thus, with high n - 1( ) f

likelihood, you will efficiently reach the answer ``2-to-1'' in this case---and compute  as well.s
 
The final plank in Simon's theorem is that a classical polynomial-time randomized algorithm cannot 
achieve anywhere near the same level of confidence in the answer.  This is rigorously proved when the 
algorithm is only allowed to query the function  in its Boolean form.  If  is given as a numerical f f
function (such as under the reductions to polynomial and linear functions on assignments 4 and 5), 
then classical impossibility is unclear.  This is the import of my article 

https://rjlipton.wpcomstaging.com/2011/11/14/more-quantum-chocolate-boxes/
from November 2011.  This objection notwithstanding, Peter Shor was inspired by Simon's algorithm to 
find an efficient quantum algorithm for a standard (i.e., non-oracle, non-learning) problem that much of 
humanity believes in---and depends on---its not being efficiently classicially solvable.  This problem is 
our old friend factoring, whose decision version we saw belongs to .  NP ∩  co - NP
 

 

 

https://rjlipton.wpcomstaging.com/2011/11/14/more-quantum-chocolate-boxes/


 
[Lecture then took Qs on homeworks.  I mainly wanted to emphasize the similarity of the use of front-
and-back Hadamard transform between graph states and the week's application examples.  The main 
difference is that the graph states have only the initial  qubit lines for their vertices, whereas the n

applications have  or  more qubits beneath.  I closed by inserting the following snippet---here with a 1 n
better diagram than the one I drew in lecture.]
 
When Graph States Go "Hyper"
 
Let us revisit the example at the end of the Friday 12/01 lecture of the graph state circuit for the triangle 
graph on three nodes.  Suppose we change it by rubbing out the first from the middle column, which -1 

was previously on the arrow shown in blue:
 

 
That is, we removed the  from the row for .  The middle column now "fires" only when all 3 bits -1 011

are , i.e., for the component of  in any state.  This is the action of the double-controlled -gate, 1 111 Z

 (which is really a triple control of a  phase shift).  It is easy to diagram in a quantum circuit:CCZ 180∘
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In graph-theoretic terms, this has replaced the edge  by the hyper-edge , thus creating a 2, 3( ) 1, 2, 3( )

hypergraph.  The effect of changing only the color of the mouse in row 4 (for ) may seem small, 011

but it has a wild effect on the state vector.  Now  has  positive paths from  instead z = 000 5 x = 000

of 4, so its amplitude is .  Six other components have amplitude , and they collectively have  =
5-3
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of the probability.  The other has  positive paths to  negative, and so amplitude  which 7 1 =
7-1
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squares to .  Note that the previous amplitude was  which squares to just , so flipping just 9

16
=

6-2
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one path of eight made a  difference to the probability, more than one might expect.  The  gate 
5

16
CCZ

could likewise be in any order---the gates commute so there is no element of time sequencing until the 
final bank of  gates.  The middle part is "instantaneous."H

 
This little illustration of wildness sits over a more general point.  When you translate the action fo the 

 from Boolean logic to a numerical equation, you get one that is cubic---just like from general CCZ

3SAT on the homeworks.  Counting solutions to this kind of cubic equation is -hard.  In fact, NP

sandwiching the  gate between two  gates (on any one qubit line) gives the Toffoli gate (with CCZ H

target on that line).  So  likewise gives a universal gate set.  There is a general theorem:CCZ

 
Gottesmann-Knill Theorem: There is a deterministic polynomial-time classical algorithm that, given 
any -qubit quantum circuit  composed of the gates , , , , , , and  only, computes n C H CNOT S X Y Z CZ

 exactly in  time, where  is the number of gates in .   C0n 0n sO 1( ) s ≥ n C
 
As soon as we add , , or , the theorem goes away---and we have to deal with the full power of Tof T CS

quantum circuits.  That this power goes beyond classical randomized algorithms is argued by Shor's 
Theorem, to come next.
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