
CSE491/596 Lecture Fri. 12/10/21: Visualizing Small-Scale Quantum Applications

For the textbook, I devised a "maze" visualization of quantum amplification and interference for
applications with up to 3 or so qubits. I found that the brilliant Dorit Aharonov had used the same idea.
Most basic gate matrices have the following "balance" property: all nonzero entries have the same

magnitude, so normalizing factors like can be set aside. Then the Hadamard, CNOT, Toffoli, and 1

2

Pauli gates (ignoring the global factor in) give just entries or , which become the only possible i Y +1 -1

values of any Feynman path, which means a multiplicative term in the ultimate matrix product. That
makes it easier to sum the results of paths. The index values become "locations" in the m, l, k, j, i, …

wavefront as it flows for time . Since the paths are discrete we can picture "lab mice" running through s
the maze. The humorous treatment in section 7.5 illustrates:

1. superposition
2. interference
3. amplification
4. measurement
5. the system's quantum state after a measurement.

One nice thing is that you can read the mazes left-to-right, same as the circuits. Here is the

 entangling circuit example:H + CNOT

No interference or amplification is involved here---the point is that if you enter at , then and 00 00

 are the only places you can come out---and they have equal weight. To see interference, you can 11

string the "maze gadgets" for two Hadamard gates together:

00

01

11

10

00

01

11

10

input x = 00

-1

-1

H⊗ I CNOT

In linear-algebra terms, all that happened at lower right was giving . But the wave 1 ⋅ 1 + - 1 ⋅ 1 0

interference being described that way is a real physical phenomenon. Even more, according to
Deutsch the two serial Hadamard gates branch into 4 universes, each with its own "Phil the mouse"
(which can be a photon after going through a beam-splitter). One of those universes has "Anti-Phil",
who attacks a "Phil" that tries to occupy the same location (coming from a different universe) and they
fight to mutual annihilation.

Examples in Chapter 8, "Deutsch's Algorithm"

David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing
while he and I were graduate students at Oxford in the mid-1980s. At first, he claimed quantum
computers could solve the Halting Problem in finite time. Fellows of Oxford's Mathematical Institute
refuted the claim. But it was not crazy: a year ago it was proved that a binary quantum system of
"interactive provers" can (kind-of-)solve the Halting Problem in finite time. (My review of the paper is at
https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/) Per my memory of
observing some meetings about it, the gap in Deutsch's argument had to do with properties of
probability measures based on infinite binary sequences.

So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that
quantum computers can do and classical ones cannot. (Well, unless the playing field is leveled for
them...but before we argue about it, let's see the task.) The task is a learning problem, a kind of
interaction we haven't covered until this last day. Instead of "input , compute , a learning x y = f x "()

problem is to determine facts about an initially-unknown entity that you can query. f

1. Oracle Turing machines give a classic way to define this kind of problem. For oracle functions
 or languages drawn from a limited class---such as subclasses of the regular languages---f A

can we design an OTM that on input (for large enough) can distinguish what is in time M 0n n A

(say) polynomial in ? The computation can learn about by making queries on n M 0A n A y

selected strings and observing the answers . y A y()

0

1

0

1

input x = 0

-1 -1

input x = 1

1 1

1 -1

1 1

1 -1
=

2 0

0 2

0 1

2. One can also define oracle circuits that have special oracle gates with some number of m

input wires and enough output wires to give the answer on any .f y() y ∈ 0, 1{ }m

3. An ordinary electrical test kit behaves that way. It is a circuit with a place(s) for you to insert one
or more (possibly-defective) electrical components . The test results should diagnose A

electrical facts about .A
4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms

work this way. They involve an oracle function given in reversible form f : 0, 1 0, 1{ }n → { }r

as the function defined by:F : 0, 1 0, 1 { }n+r → { }n+r

. F x, z = x, f x ⊕ z() (())

Usually is and the comma is just concatenation (i.e., tensor product) so the output is just z 0r

. In the simplest case , is a two-(qu)bit function. Some examples:xf x() n = r = 1 F

• If is the identity function, , then .f f x = x() F x, z = x, x⊕ z = CNOT x, z () () ()

• If , then : , , , .f x = ¬x() F x, z = x, x ↔ z() () F 00 = 01() F 01 = 00() F 10 = 10() F 11 = 11()

• If is always false, i.e., , then is the identity function.f f x = 0() F

• If , then , so , , , f x = 1() F x, z = x, ¬z() () F 00 = 01() F 01 = 00() F 10 = 11() F 11 = 10.()

These are all deterministic as functions of two-qubit basis states, so they permute the quantum
coordinates , , , and . Recall that gives the permutation that swaps 1 = 00 2 = 01 3 = 10 4 = 11 CNOT

the coordinates 3 and 4, that is, in swap notation. In full, we have:CNOT = 3 4()

, , , .F = 3 4id () F = 1 2¬ () F = 0 () F = 1 2 3 41 ()()

The functions and are constant. The identity and functions have one true and f x = 0() f x = 1() ¬

one false value each, so they balance values of and . The question posed by Deutsch is:0 1

How many queries are needed to tell whether is constant from whether is balanced?f f

If we just think of , suppose we try the query and ask for . If we get the answer "f y = 0 f y()

 then it could be constant-false, but could also be the balanced identity function. The f 0 = 0"() f f

answer would leave both constant-true and negation as possibilities. Likewise if we try f 0 = 1()

. The first point is that this impossibility of hitting things with one query carries forward to the y = 1

way we have to modify the problem for quantum:

How many queries are needed to tell apart from ?F or F(id ¬) F or F(0 1)

It seems like we have more of a chance because now we can query two things: , , , or . Or in 00 01 10 11

the permutation view, we can query , , , or . The problem is that the range of answers we y = 1 2 3 4

can get is too limited for this to help. and can only be ro ; and can only be or F 1() F 2() 1 2 F 3() F 4() 3

. So suppose you query and get the answer . Then could be or could be . The 4 y = 3 4 F Fid F F1

basic problem for a classical algorithm is that every quadrant of the following diagram has both a
straight and a cross:

A quantum circuit, however, can make one query to an oracle gate for any of these four functions, and
can distinguish a member of the first pair from a member of the second pair by the answer to one qubit
after a measurement. The input is not but instead ; that is, the ancilla is initialized to , not to 00 01 1

. Here is the wavefront ("maze") diagram of how it works:0

There is, IMHO, an "unfair" aspect of the comparison. The classical algorithm is being allowed to
evaluate the oracle only at basis vectors. The quantum algorithm gets to evaluate it at a linear
combination---indeed, it's the state

 = - + - + -
1

2
00 01 10 11

00

01

11

10

Fid F¬ F0 F1

1

2

00

01

11

10

00

01

11

10

input x = 01

-1

-1 -1

-1

-1

-1

-1

-1

F1

from the Fri. 12/4 lecture. If we do the kind of linear extension of Boolean logic that was covered as the
"Binary Linear Equations" presentation option, then we can solve the problem in one shot classically by
evaluating at the point and seeing where the signs end up in the resulting vector. FYI: 1,-1, 1,-1() -
https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/

Superdense Coding

It is easy to rig cases where you can distinguish them exactly by asking one query and F , F , F , F0 1 2 3

measuring both qubits. Just define , for instance. "Superdense coding" is a case where the F 00 = ii()

rigging has a bit of surprise because it appears to convey 2 bits of information with just 1 qubit of
communication. This is impossible by Holevo's Theorem that qubits can yield only bits of classical n n

information. (Another instance of this that you can input bits of information by choosing the ∼ n
1

2

2 CZ

gates for edges of an undirected -vertex graph in a graph-state circuit on qubits, one for each n G CG n

vertex, but you can only get bits of information out by measuring. Hence graph-state encoding is n
majorly lossy.) The rub is that the rigging involves the communicating parties "Alice" and "Bob" already
having exchanged 1 bit of information in order to set them up with an entangled qubit pair.

We will regard it as a nice case of the learning problem because it uses the four Pauli matrices. We
want to identify one of the following four possibilities exactly by the results of two qubits.

This time the input is . To work it out via wavefronts:00

00

01

11

01
-1

-1

-1

-1

I ⊗ I X ⊗ I Z ⊗ I -iY ⊗ I = XZ ⊗ Y

Deutsch-Jozsa Extension

Getting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishing
constant functions from balanced ones, then you can make the classical f : 0, 1 0, 1{ }n → { }

algorithms require queries, while the quantum ones can still do it on one query to a completely 2 + 1n-1

separable superposed state. This is a conditional problem, called a promise problem, in that it only
applies when is in one of those two cases. If is neither balanced nor constant, then "all bets are f f

off"---any answer is fine, even . ¯ \ _ ツ _ / ¯ ()

The maze diagrams would get exponentially big, but we can track the computations via linear algebra.
It is like Deutsch's setup except with in place of the first , input in place of , and H⊗n H 0 1n 01

targets (ignoring the normalizers):2

• constant (instead of , so that is certainly measured.↦ +0n 0 1 +00 01 0n

• balanced (instead of , such that is certainly not measured.↦ ? +10 11 0n

The key observation is that for any , any argument , and , the amplitude in the f x ∈ 0, 1{ }n b ∈ 0, 1{ }

component of the final quantum state isxb 𝜙

.-1 -1
1

2n+1

∑

t ∈ 0,1{ }
n

()x•t()f t ⊕b()

Here means taking the dot-products (which is the same as) and adding them up x • t x ⋅ ti i x ∧ ti i

modulo (which is the same as XOR-ing them). Well, when this is always just zero, so the 2 x = 0n

first term is and just drops out, leaving -1()0

00

01

11

01

00

01

11

01

input x = 01

-1

-1

-1

-1

.𝜙 0 b = -1 -1n 1

2n+1

()b ∑

t ∈ 0,1{ }n

()f t()

Note that the term is independent of the sum over , so it comes out of the sum---and this is why -1()b t
we get two equal possibilities in the original Deutsch's algorithm as well. Ths final point is that:

• When is constant, these terms are all the same, so they amplify---giving for the constant-f
1

2

false function and for constant-true. Both of these amplitudes square to and so together -1

2

1

2

soak up all the output probability, so that is measured with certainty.0n

• When is balanced, the big sum has an equal number of and terms, so they all interferef +1 -1

 and cancel. Hence will certainly not be measured.0n

Added: A randomized classical algorithm can efficiently tell with high probability whether is constant f

by querying some random strings. If it ever gets different answers then definitely is not f y ≠ f y'() () f
constant. (So, under the condition of the "promised problem," it must be balanced.) If it always gets
the same answer, then since any balanced function gives 50-50 probability on random strings, it can
quickly figure that is constant. But it is still the case that a deterministic algorithm needs f
exponentially many queries and hence exponential time.

Brief Conclusion: Simon's Algorithm to Shor's to the Present

Daniel Simon extended Deutsch-Jozsa to a problem where one can prove that a classical randomized
algorithm needs exponential time. I still have reservations about whether the classical setting is fair
(FYI, see https://rjlipton.wordpress.com/2011/11/14/more-quantum-chocolate-boxes/), but there is no
doubt about what it led to. Peter Shor in 1993 realized that if he substituted for Deutsch-Jozsa QFTn

and Simon's use of , then he could make it impact the (group-theoretic) periodicity in the powering H⊗n

function modulo a number , in a way that allows finding and with high probability in roughly-M = pq p q

quadratic quantum time. That is, he classified FACTORING as belonging to . This plus the de-BQP

randomization of PRIMES from co- to in 2002 and UGAP (which is the graph-accessibility RP ∩ RP P

problem for undirected graphs) from randomized logspace to in 2004 completes our current top-level L

knowledge about the landscape of major complexity classes:

P

NP co-NP
𝜃 > 45∘

A

B

means A ≤ B
p
m

REG

∃q ∀q

Note differences from
the unbounded
computability case:
NP intersect co-NP is
not known (or believed)
to equal P, and the
quantifiers are length-
bounded by a polynomial.

FACT

PRIMES

SAT, G3C TAUT

BPP BP
P

RP co-RP

BQP

BQP BQP

L
NL GAP

CVP

UGAP

PSPACE

TQBF

EXP

RE

REC
co-RE

Known:
EXP ≠ P,

PSPACE ≠ NL

L ≠ REG

(and , etc.)EXP ≠ REC ≠ RE

