
CSE491/596, Fall 2020 Problem Set 4 Due Mon. Oct. 26, 11:59pm
Plus topics for presentations on Oct. 22–23

Reading: Picking up Debray’s notes in section 9, Monday’s lecture will pick up the ex-
ample in Theorem 9.1 but relate it to ALLTM . Skim the discussion of Post’s Correspondence
Problem—it arises in a different way as a presentation option below. The first part of section
10, Theorem 10.2, will be covered later in-tandem with Theorem 13.12 when we begin com-
plexity theory. Skip page 30 with the subject of “oracles”—IMHO it has limited value until
late in the complexity theory unit where binary search becomes a quintessential example of
an oracle process. But page 31 picks up with useful examples of the kind also slated for the
Monday 10/19 lecture, when also Rice’s Theorem will be proved by applying the all-or-nothing
switch idea as a filter, pretty much as Debray does it on page 32. From there until the end of
section 12, the material becomes presentation options as detailed further below. This all will
enable us to connect section 13 to what has been going on in sections 8–10. Likewise the first
half of section 14—but stop before Theorem 14.9 on page 46 of the notes.

In brief, the reading is through Rice’s Theorem by Monday and through page 45 (jumping
over skim/skip parts) by Friday of next week. Presentation options are after the problems.

(1) Prove by reduction from ATM (or KTM) that the following decision problem is unde-
cidable:

If-Else

Instance: A program P in Java (or some other high-level programming language) and a
particular if-then-else statement S in P .

Question: Does there exist an input x such that when P (x) is run, there is a point in
the computation where the “else” branch is taken?

Important note: it is assumed that the condition between if and then is decidable—i.e., that
the if-else statement itself always exits, as required of a flowchart diamond.

Also answer: is the language of the problem c.e.? Justify briefly. (12+6 = 18 pts.)

(2) With reference to Problem (1), suppose we are given a program P such that we know
in advance that a particular one of the following conditions holds. For each of the conditions,
say whether knowing about it in advance and being able to assume it enables giving a definite
yes/no answer for the If-Else problem about that particular P .

(a) For all inputs x, the computation reaches the statement S at least once.

(b) For all inputs x, the computation reaches the statement S exactly once, whereupon both
the “yes” branch and the “no” branch halt after one more statement.

(c) On input x = 10010110 (150 in binary), the computation reaches the statement S at
least once, and we only need to decide whether that computation ever takes the “else”
branch.

(d) On input x = 10010110 (150 in binary), the computation reaches the statement S exactly
once, and we only need to decide whether that computation takes the “else” branch.

In each case, if the answer is no, then you will be able to do the reduction in problem (1) in
a way that the mapped programs P = PM,w also always satisfy the extra condition—regardless
of whether M accepts w or not. (Perhaps you have already done so.) If you say yes to any
condition, justify why. (24 pts. total)

(3) Prove via the “all-or-nothing switch” that the following two problems are undecidable:

PAL1

Instance: A deterministic Turing machine with input alphabet Σ = {0, 1}.
Question: Is there a palindrome x such that M accepts x?

PAL2

Instance: A deterministic Turing machine with input alphabet Σ = {0, 1}.
Question: Does M accept all palindromes?

Also say which of these languages is c.e., if any. (24 pts. total)

(4) Recall that PAL stands for the language of palindromes over the alphabet Σ = {0, 1}.
Prove that the language

PAL3 = {〈M〉 : PAL = L(M)}

is neither c.e. nor co-c.e. (24 pts.) Then answer: What about the language

PAL4 = {〈M〉 : PAL ⊆ L(M)}?

Is it c.e.? co-c.e.? neither-nor? (12 pts., for 36 total on the problem and 102 pts. on the
written part of the problem set)

Presentation Options For Thu–Fri. 10/22–23.
(The first two or three can be done by a team.)

(A) Any workable system of logic F gives rise to a proof predicate RF (S, π) meaning π is a
proof of the theorem S in the system F . The system is effective if RF is decidable—and usually
RF is polynomial-time decidable. Then the set of theorems of F , namely {S : (∃π)RF (S, π)},
is always c.e. but not necessarily decidable. The system F is sound if every theorem T is
true under a natural interpretation of what it says. An important body of theorems are all
statements of the form

T (M,x,~c),

where ~c is an encoding of a sequence of IDs giving a valid accepting computation of the
Turing machine M on input x, that are factually true. This so-called Kleene T-predicate is
also decidable—and in polynomial, indeed linear, time. Using it, we can define the language
ETM along lines shown in lecture:

ETM = {〈M〉 : (∀x)(∀~c)¬T (M,x,~c)}.

A formal system F is adequate for computation if it proves that all true cases of T are true
and that all false cases of T are false (the latter are needed to verify cases of ETM), as well
as handling logical quantifiers and basic numerical and string operations. The bulk of Kurt
Gödel’s famous 1931 paper with his first incompleteness theorem was the technical detail of
showing how basic arithmetic is adequate. But we can get most of Gödel’s theorem just by
taking all the above for granted about a given F : Show that there must exist Turing machines
M such that 〈M〉 ∈ ETM is true but not a theorem of F . The only principle you need is that
if a language A is c.e. and a language B is not c.e., then A can’t equal B.

(B) With reference to (a) and the Wed. 10/14 lecture (near the end), note that we can
formalize “M is total” by the statement

SM = (∀x)(∃~c)T (M,x,~c).

OK, we changed the meaning of the T -predicate a little to have it say that M halts rather than
accepts, but we can roll with that difference. (What Kleene actually did was use the halting
version but he made an extra function U(~c) to give the output, so now “T (M,x,~c)∧U(~c) = 1”
is the same as the accepting version of the T -predicate in (a).) Now define

DF = {〈M,π〉 : RF (SM , π) ∧ 〈M,π〉 /∈ L(M)}.

Prove that assuming F is sound, (a) the language DF is decidable, but (b) F cannot prove it.
The moral is that no matter how strong a formal system F is, there will always be problems
that are decidable but not by programs that F can verify.

Indeed, show that there does not exist a Turing machine Q such that L(Q) = DF and
F proves the statement SQ. Then ask yourself: wait, why can’t Q be the Turing machine
translation of the pseudocode I just gave in part (a) to show that DF is decidable—?? (This
is where this all yields a cut-down version of Gödel’s second incompleteness theorem.)

(C) Consider any and all languages B that we can define in the form

x ∈ B ⇐⇒ (∀y)(∃z)R(x, y, z)

where R is a decidable predicate—that is, the language of encoded triples 〈x, y, z〉 that make
R true is decidable. Above we have shown that the language of total machines (which is
often called TOT) can be defined this way, ditto the ALLTM language. So can the ETM

language—because we can “throw away” the (∃z) quantifier by just making z an ignored
variable in the predicate, and just using the (∀y) quantifier where “y” becomes the pair 〈x,~c〉
from above. [Note a “symbol shift”: the “x” here is 〈M〉; the “y” is 〈x,~c〉, and the “R” is
¬T (· · ·).] Moreover, we can do this for NETM by making the “(∀y)” the throwaway and
thinking z = 〈x,~c〉 instead, with R = T rather than its negation.

The standard name for the class of languages B that are definable this way is
∏

2, because
the outer (∀y) quantifier (when not ignored) sets the tone for the definition and there is a
powerful analogy between a universal quantifier and a (possibly infinite) product. For one
thing, a product over an empty domain defaults to 1, just as a statement that is universally

quantified over an empty domain defaults to true. Thus
∏

2 contains both RE and co-RE
and also contains lots of languages that are neither c.e. not co-c.e. There is also the class of
languages A having definitions of the form

x ∈ A ⇐⇒ (∃y)(∀z)R′(x, y, z),

and this class is called
∑

2 because the leading existential quantifier sets the tone. Then∏
2 = co-Σ2 and vice-versa. An example of a language in

∑
2 is FIN = {〈M〉 : L(M) is finite},

since:
L(M) is finite ⇐⇒ (∃t)(∀x,~c) : |x| ≥ t −→ ¬T (M,x,~c).

This is using the “accepts” version of the T predicate; the point is that the portion after the
colon : is decidable once M , t, x, and ~c are determined. The reason a single-barred −→ is
used in the body is that it is part of the program logic, whereas the double arrow ⇐⇒ is
part of our outer analysis.

Finally getting to the presentation exercise—after you do a 5-minute preamble from the
above: Show that the language TOT is complete for the class

∏
2 under mapping reductions.

We’ve shown it belongs to
∏

2, so what you have to do is take a predicate R(x, y, z) that defines
a generic language B ∈

∏
2 in the above manner, and create a Turing machine MR,x that is

total if and only if (∀y)(∃z)R(x, y, z) is true for x. You have to show that the mapping from x
to MR,x is computable, where R is fixed but x can vary. Then explain how ALLTM is likewise
complete. If time allows, think about INF = {〈M〉 : L(M) is infinite}, which is basically the
complement of FIN ... [But please stop short of the subject of “oracles” and how

∑
2 equals

the class of languages that are “recursively enumerable in the Halting Problem”—I wish to
focus on the “all” versus “exists” logical structure, and oracles tend to get away from that.
What oracles are best for, IMHO, is computing functions via yes/no answers to languages.]

(D) Suppose we have a single-tape DTM M that decides whether a given binary string x is
a palindrome. Then M works correctly on strings of the form x = v10r1w where r = |v| = |w|:
it will accept them only when w = vR. Call the two cells occupied by the two 1s surrounding
the central 0r the two “mileposts.” The TM M can be allowed to change the 1s in these cells
but they are still the mileposts.

The computation M(x) starts to the left of the left milepost and must reach a point where
it reads the right milepost and makes a right move (in order to start reading the “w” part).
Call the state after that right-move q1. Now we care about is the next time (if any) that the
sole tape head of M goes back left of the left milepost to re-consult the “v” region and then
comes back right, crossing the right-milepost cell once again. The state after that move is
q2. Now M might criss-cross the right milepost cell many times in quick succession, but we
only care about cases where it has gone into the leftmost region and come back. So if we
have defined q1, . . . , qi, then we only get qi+1 after it has traveled the distance between the
mileposts, which means that qi+1 comes at least 2r steps after qi (2r + 4 steps, to be more
precise, but its being Θ(r) is what we care about and why we have the middle 0r region to
begin with). Let qk be the last such state in the sequence before M halts. Note that states
can be repeated in (q1, . . . , qk); the basic one-tape TM that recognizes PAL in quadratic time
needs only one loop with two branches, one using a state r0 to remember that the last char
read was a 0 and otherwise r1 to remember a 1. The sequencing is what matters—(q1, . . . , qk)
is called a crossing sequence at the right milepost cell. The key fact is:

For any r and v ∈ {0, 1}r, with M fixed, the crossing sequence (q1, . . . , qk) of
the accepting computation of M on input x = v10r1vR uniquely determines v.

Convince yourself of this fact by considering how the computation works on a single tape,
regardless of how the characters on that tape get altered. Then use this to justify two further
deductions:

� For some strings v ∈ {0, 1}r, the corresponding k must be proportional to r (as r
grows—note that the code of M stays fixed). Otherwise you would have a violation
of the Pigeonhole principle, since there are 2r distinct strings v but you wouldn’t have
enough crossing sequences to go around.

� It follows that the running time of M must be Ω(r2), which is quadratic in n = |x| =
3r + 2.

Hence it is impossible to recognize palindromes in less than quadratic time on a single-tape
TM. Lurking in the background are how this argument also lower-bounds the number of
passes that a “streaming algorithm” in place of M must make, how the pigeonhole argument
resembles that for S = {0, 1}r being a PD set for PAL, and the notion of Kolmogorov
complexity in the skimmed section of Debray’s notes—but you especially need not go into
the whirl of definitions leading to Berry’s Paradox there.

(E) Unlike (D), this option is IMHO represented well by Debray’s notes on pages 32–33
without going to excess. They are supplemented by my own notes called “a programmer’s view
of the S-m-n and Recursion Theorems” in the Optional Reading section of the course webpage.
Debray calls this “the trippiest part of the class” and “getting weirder”; my program-style
presentation tries to unroll the enigma but maybe it too gets trippy. Anyway, the goal is to
show how to create a total program P such that L(P) = {〈P 〉}. Finish with some general
remarks about why this doesn’t cause any paradox.

(F) Define a finite-state transducer (FST) T = (Q,Σ, δ, s, F, φ) to have instructions of the
form (p, c/u, q) where u is a string that is output during the transition. This allows u = ε
whereupon output is paused in that step. In addition, the rule is that if T does not end in a
state in F , then the entire computation is cancelled—so the function T (x) it computes can be
undefined at certain x. But if the final state f is in F , then there is a final string φ(f) that
gets appended to the output, again possibly ε to do no further change.

Now say that a language A regular reduces to a language B (written A ≤reg
m B) if there is

an FST T such that for all x,

x ∈ A ⇐⇒ T (x) is defined and T (x) ∈ B.

Show that if A is not regular, then B is not regular. Use this to give some examples of
non-regularity proofs by reduction rather than by Myhill-Nerode. Show, for instance, that
{anbn : n ≥ 0} ≤reg

m {x : #a(x) = #b(x)}.

