Review Session Notes on the Myhill-Nerode Theorem

These are best viewed with the Review Session recording <u>https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=88581f77-62ca-4388-957b-</u>b09700197f0d

 $L_2 = \{x0y: |x| = |y|\}$ Re-cast this to say:

 $L_2 = \{w : w \text{ can be broken as } w =: x 0y \text{ such that } |x| = |y|\}$

 $L_2 = \{w : w \text{ can be broken as } w =: u 0v \text{ such that } |u| = |v|\}.$

Take $S = 0^*$. Clearly infinite. Let any $x, y \in S$ ($x \neq y$) be given. Then we can represent them wlog. as $x = 0^i$, $y = 0^j$ where i < j. MisTake $z = 00^i$. Then $xz = 0^i00^i$ is in L_2 but (this is the trap): $yz = 0^j00^i$ which is not in L_2 because $j \neq i$. Refutation: The case i = 3, j = 5 is a possible one for our general choice. Then $yz = 00000 \cdot 0 \cdot 000$, however, this string also can be broken as $0000 \cdot 0 \cdot 0000$ and so it does belong to L_2 after all. Correct: take $z = 01^j$ using the larger number of 1s. Now it is $yz = 0^j01^j$ that belongs to L_2 , whereas $xz = 0^i01^j$ cannot belong because even if i + j is even, there are too many 1s to break it with a 0 in the middle. (E.g. with the same i = 3, j = 5 values, xz = 000011111.)

Common mistake on both, but especially saw it on L_3 : the "Too Many Stars" problem. $L_3 = \{uv : u \oplus v = 1^{|u|}\}$. In view of the basic idea that $00000 \oplus 11111 = 11111$, the temptation: take $S = 0^*1^*$. Problem: A general choice of strings x, y in this S has the form:

 $x = 0^{p}1^{q}$ $y = 0^{r}1^{s}$, where all you get from $x \neq y$ is that $p \neq r \text{ OR } q \neq s$.

Taking $S = \{0^n 1^n : n \ge 0\}$ is OK from the degrees of freedom point of view: a general choice is $x = 0^p 1^p$

 $y = 0^r 1^r$ where $p \neq r$ (and wlog. you can say p < r).

Then this works with $z = 1^p 0^p$ again, without needing the "wlog.", but is more complicated than the key answer taking simply $S = 0^*$.