Review Session Notes on the Myhill-Nerode Theorem

These are best viewed with the Review Session recording https://ub.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=88581f77-62ca-4388-957bb09700197f0d
$L_{2}=\{x 0 y:|x|=|y|\}$ Re-cast this to say:
$L_{2}=\{w: w$ can be broken as $w=: x 0 y$ such that $|x|=|y|\}$
$L_{2}=\{w: w$ can be broken as $w=: u 0 v$ such that $|u|=|v|\}$.

Take $S=0^{*}$. Clearly infinite. Let any $x, y \in S(x \neq y)$ be given. Then we can represent them wlog. as $x=0^{i}, y=0^{j}$ where $i<j$. MisTake $z=00^{i}$. Then $x z=0^{i} 00^{i}$ is in L_{2} but (this is the trap): $y z=0^{j} 00^{i}$ which is not in L_{2} because $j \neq i$. Refutation: The case $i=3, j=5$ is a possible one for our general choice. Then $y z=00000 \cdot 0 \cdot 000$, however, this string also can be broken as $0000 \cdot 0 \cdot 0000$ and so it does belong to L_{2} after all. Correct: take $z=01^{j}$ using the larger number of 1 s . Now it is $y z=0^{j} 01^{j}$ that belongs to L_{2}, whereas $x z=0^{i} 01^{j}$ cannot belong because even if $i+j$ is even, there are too many 1 s to break it with a 0 in the middle. (E.g. with the same $i=3, j=5$ values, $x z=000011111$.)

Common mistake on both, but especially saw it on L_{3} : the "Too Many Stars" problem.
$L_{3}=\left\{u v: u \oplus v=1^{|u|}\right\}$. In view of the basic idea that $00000 \oplus 11111=11111$, the temptation:
take $S=0^{*} 1^{*}$. Problem: A general choice of strings x, y in this S has the form:
$x=0^{p} 1^{q}$
$y=0^{r} 1^{s}$, where all you get from $x \neq y$ is that $p \neq r$ OR $q \neq s$.
Taking $S=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is OK from the degrees of freedom point of view: a general choice is
$x=0^{p} 1^{p}$
$y=0^{r} 1^{r}$ where $p \neq r$ (and wlog. you can say $p<r$).
Then this works with $z=1^{p} 0^{p}$ again, without needing the "wlog.", but is more complicated than the key answer taking simply $S=0^{*}$.

