
CSE596 Notes on Complexity Class Relations Fall 2018

These are lecture notes for Monday 11/5 and Wednesday 11/7.

The central mystery of computational complexity is: why do we know tight separations between
classes defined for the same complexity measure but have a yawning exponential gap in our knowledge
of inclusions of classes between the major complexity measures? The best inclusions we know are:

Theorem 1. For any “reasonable” time measure t(n) ≥ n + 1 and space measure s(n) ≥ log2 n,

DSPACE[s(n)] ⊆ NSPACE[s(n)] ⊆ DTIME[2O(s(n)]
DTIME[t(n)] ⊆ NTIME[t(n)] ⊆ DSPACE[O(t(n))] ⊆ · · ·

Proof. The first and third containments are immediate by definition. For the second, let N be an
NTM with some number k of tapes and work alphabet Γ that runs in space s(n), and consider any
input x to N , putting n = |x| as usual. The notion of “reasonable” allows us to lay out in advance
s(n) tape cells that N is allowed to change. Thus any configuration I has the form I = 〈q, w,~h〉
where q is the current state, w ∈ Γs(n) represents the current content of the cells N can change, and
~h gives the head positions on all tapes, including the location of the input head reading x. Note that
I does not need to give the parts that don’t change—if all cells occupied by x are kept constant,
w doesn’t need to include any of them. So the total number of different possible IDs we need to
consider on input x is at most

|Q| · |Γ|s(n) · (n + 2)(s(n) + 2k − 2)k−1.

Since s(n) ≥ log2(n), |Γ|s(n) is at least 2log2(n) = n, so the third factor does not dominate the second
factor and the whole size is bounded by 2O(s(n)). (The +2 and 2k − 2 allow the heads to occupy
blanks to the left or right of x and the cells they can change, however they are laid out on the tapes;
they don’t really matter to the 2O(s(n)) size estimate.)

Now we define a directed graph Gx with the IDs I, J, . . . as its nodes and the relation I `N J
as its edge relation. Then N accepts x if and only if breadth-first search from the starting ID I0(x)
finds an accepting ID. Since BFS runs in time polynomial in the size of the graph, and polynomial-
in-2O(s(n)) still gives 2O(s(n)), we obtain a deterministic algortihm that decides whether x ∈ L(N) in
time 2O(s(n)). This proves the second containment.

The fourth containment is (IMHO) best described as a depth-first search. Given a k-tape NTM
N that runs in time t(n), we may suppose N has binary nondeterminism, so that on any input x
of length n there are at most t(n) bits of nondeterminism that N can use. We can organize all
the possible guesses y as branches of a binary tree T of depth t(n) and allocate t(n) cells to hold
the current y we are trying. Since N(x) cannot possibly use more than kt(n) tape cells, we need
only t(n) + kt(n) space total to do a full transversal of T . We accept x if and only if an accepting
branch is found. This simulation takes roughly 2t(n) time but it all operates within O(t(n)) space,
so L(N) ∈ DSPACE[O(t(n))].

For example with s(n) = O(log n) we get L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. This brings
us back full-circle to the deterministic space measure, and we can ratchet up to the next level:
PSPACE ⊆ NPSPACE (actually, these two are equal by Savitch’s Theorem, for later) ⊆ EXP =def

DTIME[2n
O(1)

] ⊆ NEXP ⊆ EXPSPACE. The only multi-link chain of differences we know from these



classes is NL ⊂ PSPACE ⊂ EXPSPACE (or with L in place of NL). The links in that chain are not
only different, they are vastly different, because deterministic space has a tight hierarchy:

Theorem 2. If s1, s2 are “reasonable” space functions and s1(n) = o(s2(n)), then DSPACE[s1(n)]
is properly contained in DSPACE[s2(n)].

Thus for example, in the case starting with s1(n) = log2 n and s2(n) = log2(n) =def (log n)2, we
get:

L ⊂ DSPACE[(log n)2] ⊂ DSPACE[(log n)3] ⊂ · · · ⊂ DSPACE[n] ⊂ DSPACE[n log n] ⊂ DSPACE[n2] ⊂ · · ·

The separations in the above chain tell us that at least one of the containments in Theorem 1 must
be proper (for s = log2 n and generally). In fact, “we” believe all four of them are proper, but we
haven’t proved any of them.1 The hierarchy for deterministic time is almost as tight:

Theorem 3. If t1, t2 are “reasonable” time functions and t1(n) log(t1(n)) = o(t2(n)), then
DTIME[t1(n)] is properly contained in DTIME[t2(n)].

In particular, this means that even within P, deterministic time is quite stratified:

DLIN =def DTIME[O(n)] ⊂ DTIME[N1.000001] ⊂ DTIME[n
√
n] ⊂ DTIME[n2] ⊂ DTIME[n3] ⊂ · · · ⊂ P.

So why can’t we tell that SAT does not belong to DTIME[N1.000001], let alone that it does not belong
to P? A good question! The best road for understanding the issue is to see how the common proof
of both theorems 2 and 3 works. The notes by Debray prove only a weaker version with

√
t1(n)

in place of the log(t1(n)) factor, and the reason the professor at Stanford did this is that existing
presentations of the stronger result are so ‘yucky’ that Allender and Loui and I didn’t prove them
in our notes either. However, I have found a way to roll several technical propositions into a single
statement that gives the springboard for the final diagonalization step of the proof:

Theorem 4. We can build a single 3-tape DTM M3 with tape alphabet Γ3 = {0, 1, } such that for
any DTM M with input alphabet Σ = {0, 1} but any number k of tapes and work alphabet ΓM of
any size, there is a constant C > 0 such that for any x ∈ Σ∗ and t > 0, the first t steps of the
computation of M on input x are simulated by the first C + Ct log(t) steps of M3 on input 〈M,x〉,
using at most C times as much space.

The constant C depends on the given M . It does not depend on w. It mostly comes from the string
length of the code 〈M〉 of M and reflects not only the number of states and instructions but also the
overhead for encoding ΓM by the binary-plus-blank alphabet Γ3. It also gets a contribution from
the constant factor in the O(log t) time overhead for reducing k tapes to 2 tapes. Note that going
from time t to time O(t log t) is markedly better than the O(t2) time shown in class for getting down
to a single tape. The machine M3 on input 〈M,x〉 first copies the M part to its third tape so that
it doesn’t get in the way of access to the x part on the first tape, which it divides into not just k
but 2k tracks. The second tape is needed only to help unspool data from ` cells on 2 tracks to 2`
cells on 1 track and vice-versa. The purpose is that whereas the actual tape heads of M(x) might
get spaced far apart, their virtualizations on the tracks of M3 can be kept close together so that M3

usually doesn’t have to incur the full t-step overhead of the k-tapes-to-1 proof on every iteration.
There are three further statements (but one can jump straight to the proof):

1Except for DTIME[O(n)] ⊂ NTIME[n+ 1] for a technical reason that doesn’t port to other machine models.



(a) In fact, M3 doesn’t need the third tape. It can adopt the “cartouche” idea from Assignment 3
to keep the code of M on a (2k + 1)-st track and caterpillar it along as needed. So the code
〈M〉 part doesn’t get in the way of the x part after all.

(b) For any fixed M but variable x, both M3 and the resulting 2-tape simulator (call it M2) can
also be given the property that the locations of their tape heads at any time t′ depend only on
n = |x| and on t′, not on the particular bits of x. This property is called obliviousness. It is
achievable even though the heads of M may be far from oblivious.

(c) Since the second tape is used only for data movements that are knowable in advance, the
conversion of M2 to equivalent Boolean circuits can be laid out for the first tape much as shown
during the proof of the Cook-Levin Theorem. By the obliviousness, however, the location of
the “six-cell lozenge” in row t′ can be known in advance for any t′. Therefore we only need to
give it once for each row, while the remaining (binary encodings of) characters in other cells are
merely preserved. Likewise, the movements using Tape 2 are just directly coded by single wires
in the circuit for each cell that traverse many rows at once. The upshot is that the number of
gates needed for each row is constant, so the total number of gates and wires is order-of the
running time of M2, which is O(t log t). Therefore:

– Every language accepted by an M running in time t(n) has Boolean circuits of size
O(t(n) log t(n)).

– The reduction in the Cook-Levin theorem can be computed in time O(p(n) log p(n)),
which is notably better than the Õ(p(n)2) time that was stated. It is asymptotically very
efficient. It means that 3SAT is also complete for NTIME[Õ(n)] under reductions that are
computable in deterministic Õ(n) time.

Proof of Theorems 2 and 3. We describe diagonal languages Ds ∈ DSPACE[s2(n)] \ DSPACE[s1(n)]
and Dt ∈ DTIME[t2(n)] \ DTIME[t1(n)] in terms of machines Ms and Mt that expressly run within
the space bound s2(n) and time bound t2(n), respectively. Since their descriptions differ only in the
initial detail, we describe both machines in the same breath. They each have the same three tapes
as M3 above, plus Mt has a fourth tape to count up to t2(n)—which is possible by the definition of
t2(n) being “reasonable” (in Debray’s notes, or formally, “fully time constructible” in other sources).

On any input x, taking n = |x|, Ms lays out s2(n) tape cells that its run of M3 will
be allowed to use, while Mt starts counting up to t2(n).

Both machines try to decode x = 〈M〉y for some Turing machine M . If this is not
possible, they reject x.

On success, they begin simulating M3(〈M,x〉). Note that the “own code” 〈M〉 remains
part of x, as does the “padding” y. Since the 〈M〉 part still gets copied to the third tape,
this is a real-not-virtual run of M3 with no overhead. If the simulation doesn’t stay within
the s2(n) marked-off cells in Ms, or takes longer than t2(n) steps in Mt, the overstep is
immediately detected and the machine rejects x.

Otherwise, the run of M3(〈M,x〉) successfully completes. If M3 accepts x, then Ms

and Mt each reject x. If M3 rejects x, that’s when Ms and Mt accept x.

Considering first the case of space, Ms enforces the s2(n) space bound on itself, so Ds =def L(Ms) ∈
DSPACE[s2(n)]. Now suppose we had Ds ∈ DSPACE[s1(n)]. Then there would be a DTM Q running
in s1(n) space such that L(Q) = Ds. Now consider what happens when Ms runs on inputs of the
form x = 〈Q〉y:



1. After taking n = |x| = |〈Q〉| + |y| and laying out s2(n) tape cells, Ms successfully decodes x
into 〈Q〉 and y.

2. Ms seques into simulating M3(〈Q, x〉) step-for-step. There is a constant C depending only on
Q such that this takes at most C + Cs1(n) tape cells. What’s important from Theorem 4 is
that C doesn’t change if the padding-y part of x changes.

3. The space usage by M3(〈Q, x〉) still could overstep the boundaries laid out by Ms. But by
s1(n) = o(s2(n)), for all C there is an n0 such that whenever n ≥ n0, C +Cs1(n) ≤ s2(n). We
may also wlog. suppose that n0 ≥ |〈Q〉|.

4. So consider what happens on the particular input x = 〈Q〉y with y = 0n0−|〈Q〉|. Then x has
length n = n0, so C + Cs1(n) ≤ s2(n).

5. Thus the simulation of M3(〈Q, x〉) stays within the bound and runs to completion. So Ms(x)
gives the opposite answer to M3(〈Q, x〉).

6. But M3(〈Q, x〉) gives the same answer as Q(x), so we get Ms(x) 6= Q(x). This contradicts
L(Qs) = Ds.

As with the original “diagonal contradiction,” this implies that the “quixotic” machine Q running
in space s1(n) cannot exist. So Ds does not belong to DSPACE[s1(n)].

The argument for time is entirely similar. Suppose Q accepts Dt =def L(Mt) in time t1(n).
Then for any y, M3 on input 〈Q, x〉 where x = 〈Q〉y stops within Ct1(n) log t1(n) + C steps, where
the constant C depends only on Q. Since t1(n) ≥ n + 1 by assumption about time functions,
we can add in the initial 2n steps for decoding x into 〈Q〉y and get n0 such that for all n ≥ n0,
Ct1(n) + C + 2n ≤ t2(n). Thus on the input x = 〈Q〉0n0−|〈Q〉| defined as before, the whole run by
Mt(x) finishes M3(〈Q, x〉) and gives the opposite answer before the t2(n) “clock” counts all the way
down and “rings.” So L(Mt) 6= L(Q), which contradicts L(Q) = Dt.

For some technical footnotes, there are analogous theorems for nondeterministic space and time
whose proofs are trickier but give results that are even tighter—without the log(t) factor in the case
of NTIME. The ALR ch. 27 notes give the proof of the latter but it is a “skim” at most. Various
researchers including myself have devised realistic alternative models to the multitape TM that give
a fully-tight deterministic time hierarchy without the log t(n) factor but none of them has “caught
on.” The multitape TM is actually IMHO pretty realistic already. Regarding the above proof, other
sources make the “padding” y to be part of the machine. It could be extra “dummy states” that
aren’t reachable or even #comments in the code file of Q, just to make the code longer without
changing its function.

So if this “padded diagonalization” technique works so tightly within any given complexity mea-
sure, why can’t it work between them? Can we use it to get a language D ∈ NP that is not in
DTIME[p(n)] for any polynomial p? We can restrict attention to p(n) = nr for various r, or if we want
to be really strict on the time bound, p(n) = nr + r. The problem is that r can vary—as illustrated
on problem (3) on HW5. All attempts to make a machine N3 analogous to M3 that can take any ma-
chine M of any polynomial time nr and run in one fixed polynomial time nr0 have failed. We would
need such an N3 to imitate the above proof with a machine Nt that would give Dt =def L(Nt) ∈ NP.
Getting Dt ∈ NP is the sticking point because having r vary does not help one achieve a polynomial-
time NTM for Dt. There is a theorem by Dexter Kozen to the effect that “if P 6= NP is provable at
all then it is provable by diagonalization” but in https://rjlipton.wordpress.com/2014/11/26/cornell-
cs-at-50/ I discuss whether it can be a “horse” or just the “cart” being pulled by some other proof.

https://rjlipton.wordpress.com/2014/11/26/cornell-cs-at-50/
https://rjlipton.wordpress.com/2014/11/26/cornell-cs-at-50/

