
CSE610: Quantum Key Distribution and Communication
 
The task is for two communicating parties, "Alice" and "Bob", to possess the same long random binary 
string  without any other party knowing .  Once they have , they can communicate messages  up 𝜌 𝜌 𝜌 x

to the length  of  with perfect secrecy via the classical one-time pad protocol:N 𝜌
 

• Alice sends  to Bob.x' =  x⊕ 𝜌

• Bob, on receiving a string ' from Alice computes .  y y =  y'⊕ 𝜌

• Presuming he and Alice stay "on the same page" of , and that no mishaps befell the 
transmitted 

𝜌

bits, it follows that , so Bob can read what Alice sent.y = x

• An eavesdropper can read , but because  stays unknown and is completely random, having x' 𝜌

 confers no information about .x' x
 
A big cost of this is that  can be used only once: if you also intercept  then 𝜌 z' =  z⊕ 𝜌

, so you have the difference of two well-formed plaintexts, from which x'⊕ z' =  x⊕ 𝜌⊕ z⊕ 𝜌 =  x⊕ z
much information about them can be inferred.  So the one-time pad requires economical production of 
large numbers of random bits on demand.  
 
A point of this to bear in mind is that the need for  presumes that Alice and Bob do not already have a 𝜌
secure channel for communication.  They have only insecure channels that may be presumed no 
different from public reveal.  The idea can work for multiple parties, which is why it is called quantum 
key distribution (QKD), but they must be told how many bits have been used by a communication 
involving only some of them in order to stay synchronized.
 
A third point is that communicating a random  is tantamount to communicating a message .  Thus 
the 

𝜌 x

task does not need to be immediately about communicating willful messages.  It is also possible that  𝜌
does not need to be received exactly.  Plaintext messages  can be pre-processed by error-correcting x

codes (ECCs) as  so that damage to a moderately small proportion of bits still allows decoding .  z x
Whether quantum ECCs can help with this part is getting ahead of the story.  We will begin by 
supposing that Alice and Bob want to agree on  exactly.𝜌
 
A fourth point is that any sub-sequence of a random  is still random.  Even if three-fourths of  gets 𝜌 𝜌
wiped out, including (say) the whole first half, the leftover will still serve.  This is an advantage over 
cases with ECCs on structured messages.  
 
 
Entangle or Not?
 
In a perfect world, Alice would have a simple quantum solution.  She would entangle pairs  +00 11
and send the second qubit to Bob, which they would both measure in the standard basis.  By the 
postulates of quantum mechanics, Alice's results  will be perfectly random, and by entanglement, Bob 𝜌

will get the same results. 
 

 

 



The zeroth problem is that willful entanglement is still relatively expensive.  The first problem is that an 
eavesdropper, "Eve", can intercept and measure the qubits sent to Bob before sending them on.  
 

• Her measuring them is the same to Alice as if Bob did.
• Bob will get Eve's measurement results.  He could equally have gotten them himself, so he 

cannot tell the difference either.
• This is true even if Bob measures in a different basis from Eve.  

 
Entanglement is indeed the basis of the second QKD proposal, by Artur Ekert of Oxford.  But let's see 
the first, by Charles Bennett and Gilles Brassard in 1979--1984 (the BB84 protocol).  
 
 
BB84
 
The nub is that if Alice sends a qubit as  but Bob measures it as , then something affected it en 0 1

route.  What could have happened was an intermediary measuring it in the  basis and getting ,+ -

either of those two results, whereupon Bob would have a 50-50 chance of getting  from his 1

measurement.  Likewise, if Alice sends  but Bob measures , then their privacy has been broken-+ -
--though maybe by Mother Nature; i.e., not necessarily willfully.
 
The second "Quantum Fact" is that if the intermediary "Eve" measures in the  basis, learning ,0 1
Alice's bit, then Bob will get the same bit but have no way to tell it has been read.  Eve's measurement 
"collapses" what was already a basis state to the same basis state.  This goes hand-in-hand with their 
being no bar on copying an unknown qubit value when it is known in advance to belong to a given 
orthonormal basis.  
 
This raises the idea of leaving both Bob and Eve guessing as to which basis to measure in.  When (a) 
Bob guesses right, (b) Eve guesses wrong, and (c) Eve's measurement flips the bit, Eve can be caught-
--if (d), this is a qubit that Bob and Alice "sacrifice" by publicly communicating their basis choices.  Each 
of (a,b,c,d) is a potential halving of the rate of the protocol, meaning the proportion of valid bits of the 
eventual shared  to the total number  of qubits sent (by Alice).  𝜌 N
 
Alice and Bob separately need a cost-effective way to generate truly-random bits to begin with.  Each 
can do private measurements of qubits in the  state to get their private random strings.  Tis is not +

part of the task, which is for Alice and Bob to agree on the same random string .  There are actually 𝜌
some non-trivial issues with getting truly-random bits that could be a separate topic, but we will 
presume this poses no difficulty.  
 
Before the protocol begins, Alice and Bob agree on some matters of procedure, most particularly:

• which bits they will "sacrifice" as a test set  on which to catch Eve.  The rule for  does not T T

need to be kept secret; it can be "every odd bit of the good indices" (numbering bits from ).0

• what proportion  of errors/eavesdrops (i.e., flipped bits in ) they will tolerate.  Maybe .e T e = 0
Here is the BB84 protocol:

 

 



 
1. Alice generates random binary strings  and .r ∈ 0, 1{ }N s ∈ , /{ | }N

2. For  to :i = 0 N- 1

(a) if  then Alice sends a qubit  if ;  if .s =i | q =i 0 r = 0i q =i 1 r = 1i

(b) if  then Alice sends  if  and  if .s = /i q =i + r = 0i q =i - r = 1i

3. Bob independently generates a random string  (this can be before or after Alice s' ∈ |, /{ }N

sends the qubits---either way, Eve cannot know  or  at step 2).  s s'

4. For  to :i = 0 N- 1

(a) if  then Bob measures  in the  basis, recording  for the outcome s' =i | qi ,0 1 r' = 0i

 and  for the outcome .0 r' = 1i 1

(b) if  then Bob measures  in the  basis, recording  for the outcome s' = /i qi ,+ - r' = 0i

 and  for the outcome .+ r' = 1i -

5. Alice and Bob publicly reveal their strings  and .  The set  of good indices are those  for s s' I i

which , that is, when Bob guessed to measure in the same basis Alice used.s i = s' i[ ] [ ]

6. Alice and Bob also reveal  and  for .  ri r'i i ∈ I∩T

7. If there are at most  indices  such that , then they accept the results.  Else, e i ∈ I∩T r ≠ r'i i

they re-run the whole protocol from the start to try again.
 
Here is an example of a possible run and outcome---assuming no errors caused by Eve:
 

s | | / / / | | / | / / |
r 0 1 1 0 1 0 1 1 0 0 1 1
q 0 1 - + - 0 1 - 0 + - 1

Eve?             

s' / | | / | | | / / / / |
T    *   *   *  *
r'  1  0  0 1 1  0 1 1
𝜌  1    0  1   1  

 
Alice and Bob were somewhat lucky to get a shared  of length  rather than  from .  Mind 𝜌 4 3 N = 12

you, if one of the four *ed bits in  had been flipped, they would figure that since they have only a 1-in-r'
4 chance of catching Eve on any one bit, then plausibly all four test bits are known to Eve, and hence 
would ear all bits of  were untrustable as well.𝜌
 
If Alice and Bob accept with , then they can be confident that there are no errors on  either.  e = 0 I ⧵T

The final output  then is the substrings formed by the bits  (same as ) for .  If they allow 𝜌 ri r'i i ∈ I ⧵T

, then they can use randomness extraction to arrive at a shorter string  that is still random and e > 0 𝜌

with high probability reduces Eve's knowledge of  from  bits to nearly zero bits.  (A simpler way, if 𝜌 e

they don't mind the final  having expected length  rather than length proportional to , is 𝜌 𝛩 N / N( log ) N

to apply the decoding function of a -error correcting code to the good sequence, where k

.  This would subtract out Eve's expected knowledge of about  bits of the good sequence, k = 4e|I ⧵T| k

assuming the proportion of eavesdrops on  is similar to that on .  The factor of  is because I ⧵T I∩T 4

 

 



Eve gets caught only one-fourth the time on the indices in , when she guesses the wrong basis and I

the bit happens to flip.  Note that  is random and unknowable to Eve at the time she could act, I

because it depends on how  relates to , and its subsequences of even and odd indices were likewise s' s
unknowable.)
 
Presuming success is achieved with  on  and , the expected length of  is .  e = 0 T |T| = |I| / 2 𝜌 0.25N

The factor on  is the rate.  This is because half the indices expect to be good, and we are sacrificing N

half for the test set.  With smaller choices of , rates over 27% have been reported.  If  is T e = 1 / 32

tolerated, then the rate is knocked down to  at most when  is half of .1 / 8 T I
 
 
B92
 
This is the simplification that does away with Alice's random  and has her send  when  and s 0 r = 0i

 when  (or she could use  for that instead, as long as Bob knows which one she is using). - r = 1i +
 Bob still has to guess which basis to measure each transmitted qubit in, and of course, what he gets 
depends on his choice of basis, which is according to his  random string.s'
 

• If  and he gets , he knows that Alice could not have sent  in a clean run, so he s' = |i 1 0

figures Alice sent  and records .- r' = 1i

• If  and he gets , then a clean send could have been  or , so Bob punts.s' = |i 0 0 -

• If and Bob gets , then Alice could not have cleanly sent , so Bob figures it was 
 

s' = /i + -

0

and records .r' = 0i

• If and Bob gets , then it could have been  from Alice as well, so Bob punts.s' = /i - 0
 
Thus Bob records Alice's bit only in the 25% chance that he guesses the "wrong" basis and yet the bit 
still goes as Alice intended.  That caps the rate at  even before we bring Eve into the picture.  One 0.25

good thing is that Bob's revealing the set  of indices on which he recorded bits does not give useful I
information to Eve in retrospect.  
 
Unfortunately, the indices on which Bob punts cannot be used to catch Eve either.  Note that Eve can 
never be caught if she guesses Alice sent  and uses the standard basis, or when she guesses Alice 0

sent  and so uses the  basis.  She will get the same as what Alice sent and not be detectable at - X

all.  So when Alice sends , the only way Eve can be caught is when she uses the  basis, Bob uses 0 X

the standard basis, and Bob gets , which he records as  giving .  Bob and Alice again have to 1 - 1
sacrifice some of their good indices to see Eve's activity.
 
 
E91
 
 

 

 


