

Thursday 9/9: Operations on Qubits

Here is a statement that uses a lot of notational fuss to express the simplest of ideas:

Proposition: For any matrix , matrix , -vector and -vector , m× n A p× q B n x q y

.A⊗B ⋅ x⊗ y = Ax ⊗ By() () () ()

Proof. The dimensions are consistent: both sides give a column vector of entries. Showing mp
equality is where our effort to interpret vectors as functions of their indices in binary notation may x x u()

help. Under this view, gives the function , where means z = x⊗ y z uv = x u y v() () () uv
concatenation of binary strings, while the right-hand side is an ordinary numeric product. And a matrix

 gives the two-argument function . The vector becomes the function A A u,w = a() u,w x' = Ax

mapping a row-index to . Thus, putting , the right-hand u x' u = A u,w x w() ∑

w () () z' = Ax ⊗ By() ()

side is the function

z' uv = x' u y' v = A u,w x w B v, t y t() () () ∑

w () () ∑

t () ()

Now by usual rules of re-ordering summations, the right-hand side of this can be rearranged as

A u,w B v, t x w y t∑

w
∑

t () () () ()

With , we can already recognize that the part is the same as . And z = x⊗ y x w y t() () z wt()

 is the same as . So the whole thing becomesA u,w B v, t() () A⊗B uv,wt()()

,A⊗B uv,wt ⋅ x⊗ y wt∑

w,t
()() ()()

which is exactly the meaning of . So the two sides are equal. A⊗B ⋅ x⊗ y() () ☒

The simple idea is that does the operation on side-by-side with doing its A⊗B ⋅ x⊗ y() () A x B
operation on , but with no connection at all between them. We will soon have diagrams like this---y

---note that we picture the inputs coming in from the left but when writing them as matrix arguments
they will swing around to the right. As a tandem, this is formally the tensor product coming in to x⊗ y

. But really---and locally---it is just happening in one place and happening A⊗B() Ax By
independently in another place. The upshot is this:

When we have entanglement, not independence, between the part and the part, then the x y
notation will stay the same but the interpretation will change a whole lot.

[Notation note: The boldfacing on vectors and is to distinguish them when strings and are x y x y
nearby, and also to convey that they may represent specific physical quantities. The bolding of
matrices has the latter idea---in particular, quantum operators like are bolded. The textbook H,X,Y,Z
uses a smoother bolding that I don't see how to get in MathCha.]

Reversal, Adjoint, and Duality.

The reversal of a string just means writing it "backwards": , FACED = DECAF, xR x 01001 = 10010R R

and so on. A string is a palindrome if , for instance . The empty string counts as a x x = xR 1001 𝜖

palindrome since . The rule for reversal and concatenation is that for any strings and ,𝜖 = 𝜖R x y

.xy = y x()R R R

For example,

.PUCK- FACED = FACED PUCK- = DECAF-KCUP()R ()R()R

Actually, if the minus sign is a factor which could go anywhere, this would be equivalent to say -1

"DECAF K-CUP" meaning a certain pod for a Keurig coffee-maker.

This gives intuition for how matrix transpose, matrix adjoint, and matrix inverse all work like reversal
with regard to matrix product. The rules for any (invertible) matrices and are:A B

1. AB = B A()T T T

Ax

y B

2. AB = B A()* * *

3. .AB = B A()-1 -1 -1

Rule 2 follows from rule 1 because the only difference with is doing complex conjugates of individual *

entries. Rule 3 follows since . So why does rule 1 AB B A = ABB A = AA = I() -1 -1 -1 -1 -1

hold? Here our functional view might help: The transpose is the function with the two index AT

arguments reversed: . So:A j, i = A i, jT() ()

AB i, j = AB j, i = A j, k B k, i = B k, i A j, k = B i, k A k, j = B A i, j()T() ()() ∑

k
() () ∑

k
() () ∑

k
T() T() T T()

for all arguments (i.e., indices) and , so . (Note that the switch i j AB = B A()T T T

 in the middle step was just ordinary multiplication of numbers.)A j, k B k, i = B k, i A j, k() () () ()

The ideas of transpose and adjoint work also for vectors. The transpose of a column vector is a row-
vector. Likewise, the adjoint of a column vector is a row vector. When we multiply a row vector x* x
and a column vector---in that order---we get a single number, i.e., a scalar. In particular,

,x x = x i x i = x i = |x i | = ||x||* ∑

i
*() () ∑

i
x i⏨⏨[] [] ∑

i
[] 2 2

which is just the square of the Euclidean length of the vector . Now if you buy in to the reversal rule x
for adjoints, we can give a short and snappy proof of Lemma 3.1 in the text.

Lemma 3.1: If is a unitary matrix and is a vector then . U a ||Ua|| = ||a||

Proof: . ||Ua|| = = = = = = ||a||||Ua||2 Ua Ua()*() a U Ua* * () a U U a* * a a* ☒

The proof became a one-liner. Thus a unitary matrix always preseves the lengths of vectors, and in
particular, it always maps a unit vector to a unit vector. This is what makes it "legal" from the quantum
probability point of view. The fact works the other way: if a matrix always preserves the lengths of U
vectors, then it must be unitary.

The adjoint of a vector has another interpretation. It stands ready to pounce on any column vector x* x

 of the same length as and wrangle it down to the scalary x

,x y = y i = ⟨x, y⟩* ∑

i
x i⏨⏨[] []

which is the inner product of and . As such, defines the linear functional byx y x* f : H Hx

n →

.f y = ⟨x, y⟩x()

Whereas a column vector is to be interpreted as "data", the row-vector form is "code". The resulting
inner product finally suggested---to the physicist Paul Adrien Maurice Dirac in particular---to write the
adjoint of as instead, to go with writing in place of . Some nerdy things to note:x x y y

• There is no or complex-conjugation in . The complex inner product (if we write it * x⏨ x ⟨x|y⟩
that way) already does the conjugation.

• Put another way, the adjoint of is exactly what is---no further required.x
*

x x *

• If the vector has no complex entries then is the same as the ordinary real dot product x ⟨x, y⟩

 anyway. x ⋅ y = x i y i∑

i
[] []

• Hey, did you forget to write the bold for vectors? Why and not and ? The x y x y
answer is that the angle brackets already identify the contents as physically meaningful vectors.
Not only to they distinguish and from strings and , we want to write and x y x y x y
precisely when and are strings. Such as when writing , for instance.x y 10010

• There is nothing wrong with writing and , in our opinion---it just might be redundant. x y
Where this matters is in Chapter 14 where we follow the common usage of the Greek letters

 etc. to represent quantum states. Then writing , , etc., makes them look "more 𝜙,𝜓 𝜙 𝜓
quantum" but usually does not have any further significance.

• If where and are numeric vectors and is a (possibly complex) scalar, then we have z = ax x z a
the rule . We have to remember to conjugate any factor we pull out of the adjoint. z = x* a⏨ *

About a minute into this Khan Faculty video they write the rules and = aa𝜓 𝜓

, but you have to be careful that stands for a numeric vector here. It makes no = aa𝜓 * 𝜓 𝜓

sense to say e.g. that when the is the binary-bit attribute, nor that 3 = 1 3 1

 if the "7" is the rank of a playing card. (Note that it is more convenient to write 3 = 7 21 a*

rather than for the complex conjugate of a scalar, as if it were a " " dimensioned entity. a⏨ 1 × 1

We will do so on occasion.)

The form is called a bra to go with being a ket just so that the combination becomes a ⋅ ⋅ ⋅ ⋅

bracket. The genius of the notation is liberating the inner product into a product with interchangeable
parts. The bras and kets can be combined, with these resulting rules:

1. . The product dot first goes invisible, then the two vertical bars combine to ⋅ = x y x y
be one.

2. by the reversal rule. So the = ⋅ = ⋅ = ⋅ = y x y x y
*

x
*

x y
*

x y
*

flipped-around inner product is just the complex conjugate of the scalar .y x x y
3. Two consecutive kets as in is a gray area. It is tempting to equate it to so that x y ⊗x y

we could have cases like . But the product of two column vectors = 1 0 0 1 0 10010

is not really defined. If you have something like before your , then you want it to w x y
become , where the is ordinary multiplication. ⋅w x y ⋅

4. Two consecutive bras like are even grayer. Would they be the adjoint of or of x y y x
? Note what happens for tensor products of matrices: For all indices ,x y u, v,w, t

A⊗B uv,wt = = = ⋅ ()*() A⊗B wt, uv⏨⏨⏨⏨⏨⏨⏨()() A w, u B t, v⏨⏨⏨⏨⏨⏨() () A w, u⏨⏨⏨⏨() B t, v⏨⏨⏨()

= A u,w B v, t = A ⊗B uv,wt .*() *() * * ()

So . Did you expect the and to reverse? Maybe not if you realize that A⊗B = A ⊗B()* * * A B
they operate in independent systems.

5. --- ? The product of a column vector and a row vector is well defined x y p× 1 x 1 × q y

algebraically. It gives a matrix of entries . If is given as a numeric p× q A A i, j = x i y j[] [] [] y
vector inside a bra then we have to remember to conjugate its entries, so that

. The resulting matrix has rank one---so it is as far from being invertible as A i, j = x i[] []y j⏨⏨[] A
possible without being the zero matrix. It is called the outer product and has the following
important relation to inner product when given any column vector : It pounces on , z z
wrangles it into the scalar , and multiplies by that.a = y z x

6. In particular, the outer product of a vector with itself becomes an operator that x x x
makes any vector multiply by the extent to which itself aligns with . This gives z x z x
the projection of onto . One rule of projections is that repeating it doesn't change the z x

result, at least not when is a unit vector: applied to gives x x x x x z

 since is a scalar.x x = = = x x z x x x x z x x z x z x x z

The issues with the possible rules 3 and 4 still make us suspicious of Dirac notation and require being
careful with here. Can we read it as the single-tier bra multiplying the double-tier x z x x
quantity read as ? Then the dimensions don't even align for multiplying on the left by z x ⊗z x
the row vector . The issue is that the "invisible dot" between the and the is a scalar product x z x
in , but gets morphed into a tensor product in . In online forums one can find it x z x ⊗z x
explained that the tensor way of interpreting doesn't stay within the algebra of the "single-tier" z x
vectors.

But regardless, the identity multiplied by is real. Indeed, there is a strong ⋅ = x x z x x z

argument for saying that all reality goes through it: it is the basis of defining the density matrix of a
quantum state as will come later in chapter 14.

x

z

x z x

