
 
 
Thursday 9/9: Operations on Qubits
 
Here is a statement that uses a lot of notational fuss to express the simplest of ideas:
 
Proposition: For any  matrix ,  matrix , -vector  and -vector , m× n A p× q B n x q y
 

.A⊗B ⋅ x⊗ y  =  Ax ⊗ By( ) ( ) ( ) ( )

 
Proof.  The dimensions are consistent: both sides give a column vector of  entries.  Showing mp
equality is where our effort to interpret vectors  as functions  of their indices in binary notation may x x u( )

help.  Under this view,  gives the function , where  means z =  x⊗ y z uv  =  x u y v( ) ( ) ( ) uv
concatenation of binary strings, while the right-hand side is an ordinary numeric product.  And a matrix 

 gives the two-argument function .  The vector  becomes the function A A u,w  =  a( ) u,w x' = Ax

mapping a row-index  to .  Thus, putting , the right-hand u x' u  = A u,w x w( ) ∑
 

w ( ) ( ) z' = Ax ⊗ By( ) ( )

side is the function
 

z' uv  =  x' u y' v  =  A u,w x w B v, t y t( ) ( ) ( ) ∑
 

w ( ) ( ) ∑
 

t ( ) ( )

 
Now by usual rules of re-ordering summations, the right-hand side of this can be rearranged as
 

A u,w B v, t x w y t∑
 

w
∑

 

t ( ) ( ) ( ) ( )

 
With , we can already recognize that the  part is the same as .  And z =  x⊗ y x w y t( ) ( ) z wt( )

 is the same as .  So the whole thing becomesA u,w B v, t( ) ( ) A⊗B uv,wt( )( )

 

,A⊗B uv,wt ⋅ x⊗ y wt∑
 

w,t
( )( ) ( )( )

 
which is exactly the meaning of .  So the two sides are equal.  A⊗B ⋅ x⊗ y( ) ( ) ☒
 
 
The simple idea is that  does the  operation on  side-by-side with  doing its A⊗B ⋅ x⊗ y( ) ( ) A x B
operation on , but with no connection at all between them.  We will soon have diagrams like this---y
 

 

 

 



 
---note that we picture the inputs coming in from the left but when writing them as matrix arguments 
they will swing around to the right.  As a tandem, this is formally the tensor product  coming in to x⊗ y

. But really---and locally---it is just  happening in one place and  happening A⊗B( ) Ax By
independently in another place.  The upshot is this:
 

When we have entanglement, not independence, between the  part and the  part, then the x y
notation will stay the same but the interpretation will change a whole lot.

 
 
[Notation note: The boldfacing on vectors  and  is to distinguish them when strings  and  are x y x y
nearby, and also to convey that they may represent specific physical quantities.  The bolding of 
matrices has the latter idea---in particular, quantum operators like  are bolded.  The textbook H,X,Y,Z
uses a smoother bolding that I don't see how to get in MathCha.]
 
 
Reversal, Adjoint, and Duality.
 
The reversal  of a string  just means writing it "backwards": , FACED  = DECAF, xR x 01001  =  10010R R

and so on.  A string  is a palindrome if , for instance .  The empty string  counts as a x x  =  xR 1001 𝜖

palindrome since .  The rule for reversal and concatenation is that for any strings  and ,𝜖 = 𝜖R x y
 

.xy  =  y x( )R R R

 
For example,
 

.PUCK- FACED  =  FACED PUCK-  =  DECAF-KCUP( )R ( )R( )R

 
Actually, if the minus sign is a  factor which could go anywhere, this would be equivalent to say -1

"DECAF K-CUP" meaning a certain pod for a Keurig coffee-maker.  
 
This gives intuition for how matrix transpose, matrix adjoint, and matrix inverse all work like reversal 
with regard to matrix product.  The rules for any (invertible) matrices  and  are:A B
 

1. AB  =  B A( )T T T

 

 

Ax

y B



2. AB  =  B A( )* * *

3. .AB  =  B A( )-1 -1 -1

 
Rule 2 follows from rule 1 because the only difference with  is doing complex conjugates of individual *

entries.  Rule 3 follows since .  So why does rule 1 AB B A  =  ABB A  =  AA  =  I( ) -1 -1 -1 -1 -1

hold?  Here our functional view might help: The transpose  is the function with the two index AT

arguments reversed: .  So:A j, i  =  A i, jT( ) ( )

 

AB i, j = AB j, i = A j, k B k, i = B k, i A j, k = B i, k A k, j = B A i, j( )T( ) ( )( ) ∑
 

k
( ) ( ) ∑

 

k
( ) ( ) ∑

 

k
T( ) T( ) T T( )

 
for all arguments (i.e., indices)  and , so .  (Note that the switch i j AB  =  B A( )T T T

 in the middle step was just ordinary multiplication of numbers.)A j, k B k, i = B k, i A j, k( ) ( ) ( ) ( )

 
The ideas of transpose and adjoint work also for vectors.  The transpose of a column vector is a row-
vector.  Likewise, the adjoint  of a column vector  is a row vector.  When we multiply a row vector x* x
and a column vector---in that order---we get a single number, i.e., a scalar.  In particular,
 

,x x =  x i x i  =  x i  =  |x i |  =  ||x||* ∑
 

i
*( ) ( ) ∑

 

i
x i⏨⏨[ ] [ ] ∑

 

i
[ ] 2 2

 
which is just the square of the Euclidean length of the vector .  Now if you buy in to the reversal rule x
for adjoints, we can give a short and snappy proof of Lemma 3.1 in the text.
 
Lemma 3.1: If  is a unitary matrix and  is a vector then .  U a ||Ua|| =  ||a||

 

Proof: .  ||Ua|| = = = = = = ||a||||Ua||2 Ua Ua( )*( ) a U Ua* * ( ) a U U a* * a a* ☒
 
The proof became a one-liner.  Thus a unitary matrix always preseves the lengths of vectors, and in 
particular, it always maps a unit vector to a unit vector.  This is what makes it "legal" from the quantum 
probability point of view.  The fact works the other way: if a matrix  always preserves the lengths of U
vectors, then it must be unitary.  
 
 
The adjoint  of a vector  has another interpretation.  It stands ready to pounce on any column vector x* x

 of the same length as  and wrangle it down to the scalary x
 

,x y =  y i  =  ⟨x, y⟩* ∑
 

i
x i⏨⏨[ ] [ ]

 
which is the inner product of  and .  As such,  defines the linear functional  byx y x* f :  H Hx

n →

 

 

 



.f y  =  ⟨x, y⟩x( )

 
Whereas a column vector is to be interpreted as "data", the row-vector form is "code".  The resulting 
inner product finally suggested---to the physicist Paul Adrien Maurice Dirac in particular---to write the 
adjoint of  as  instead, to go with writing  in place of .  Some nerdy things to note:x x y y
 

• There is no  or complex-conjugation  in .  The complex inner product  (if we write it * x⏨ x ⟨x|y⟩
that way) already does the conjugation.

• Put another way, the adjoint  of  is exactly what  is---no further  required.x
*

x x *

• If the vector  has no complex entries then  is the same as the ordinary real dot product x ⟨x, y⟩

 anyway.  x ⋅ y =  x i y i∑
 

i
[ ] [ ]

• Hey, did you forget to write the bold for vectors?  Why  and  not  and ?  The x y x y
answer is that the angle brackets already identify the contents as physically meaningful vectors.  
Not only to they distinguish  and  from strings  and , we want to write  and  x y x y x y
precisely when  and  are strings.  Such as when writing , for instance.x y 10010

• There is nothing wrong with writing  and , in our opinion---it just might be redundant.  x y
Where this matters is in Chapter 14 where we follow the common usage of the Greek letters 

 etc. to represent quantum states.  Then writing , , etc., makes them look "more 𝜙,𝜓 𝜙 𝜓
quantum" but usually does not have any further significance.

• If  where  and  are numeric vectors and  is a (possibly complex) scalar, then we have z =  ax x z a
the rule .  We have to remember to conjugate any factor we pull out of the adjoint.  z  =  x* a⏨ *

About a minute into this Khan Faculty video they write the rules  and  =  aa𝜓 𝜓

, but you have to be careful that  stands for a numeric vector here.  It makes no  =  aa𝜓 * 𝜓 𝜓

sense to say e.g. that  when the  is the binary-bit attribute, nor that 3  =  1 3 1

 if the "7" is the rank of a playing card.  (Note that it is more convenient to write  3  =  7 21 a*

rather than  for the complex conjugate of a scalar, as if it were a " " dimensioned entity.  a⏨ 1 × 1

We will do so on occasion.)
 
 
The  form is called a bra to go with  being a ket just so that the combination  becomes a ⋅ ⋅ ⋅ ⋅

bracket.  The genius of the notation is liberating the inner product into a product with interchangeable 
parts.  The bras and kets can be combined, with these resulting rules:
 

1. .  The product dot first goes invisible, then the two vertical bars combine to ⋅  =  x y x y
be one.

2.  by the reversal rule.  So the  = ⋅  =  ⋅  =  ⋅  =  y x y x y
*

x
*

x y
*

x y
*

flipped-around inner product  is just the complex conjugate of the scalar .y x x y
3. Two consecutive kets as in  is a gray area.  It is tempting to equate it to  so that x y ⊗x y

we could have cases like .  But the product of two column vectors =  1 0 0 1 0 10010

is not really defined.  If you have something like  before your , then you want it to w x y
become , where the  is ordinary multiplication.  ⋅w x y ⋅

 

 



4. Two consecutive bras like  are even grayer.  Would they be the adjoint of   or of x y y x
?  Note what happens for tensor products of matrices: For all indices ,x y u, v,w, t

 

A⊗B uv,wt  =   =   =  ⋅  ( )*( ) A⊗B wt, uv⏨⏨⏨⏨⏨⏨⏨( )( ) A w, u B t, v⏨⏨⏨⏨⏨⏨( ) ( ) A w, u⏨⏨⏨⏨( ) B t, v⏨⏨⏨( )

=  A u,w B v, t  =  A ⊗B uv,wt .*( ) *( ) * * ( )

 
So .  Did you expect the  and  to reverse?  Maybe not if you realize that A⊗B  =  A ⊗B( )* * * A B
they operate in independent systems.   

5.  --- ?  The product of a  column vector  and a  row vector  is well defined x y p× 1 x 1 × q y

algebraically.  It gives a  matrix  of entries .  If  is given as a numeric p× q A A i, j  =  x i y j[ ] [ ] [ ] y
vector inside a bra then we have to remember to conjugate its entries, so that 

.  The resulting matrix  has rank one---so it is as far from being invertible as A i, j  =  x i[ ] [ ]y j⏨⏨[ ] A
possible without being the zero matrix.  It is called the outer product and has the following 
important relation to inner product when given any column vector : It pounces on , z z
wrangles it into the scalar , and multiplies  by that.a = y z x

6. In particular, the outer product  of a vector  with itself becomes an operator that x x x
makes any vector  multiply  by the extent to which  itself aligns with .  This gives z x z x
the projection of  onto .  One rule of projections is that repeating it doesn't change the z x

result, at least not when  is a unit vector:  applied to  gives x x x x x z

 since  is a scalar.x x  =   =   =  x x z x x x x z x x z x z x x z

 

 
The issues with the possible rules 3 and 4 still make us suspicious of Dirac notation and require being 
careful with  here.  Can we read it as the single-tier bra  multiplying the double-tier x z x x
quantity  read as ?  Then the dimensions don't even align for multiplying on the left by z x ⊗z x
the row vector .  The issue is that the "invisible dot" between the  and the  is a scalar product x z x
in , but gets morphed into a tensor product in  .  In online forums one can find it x z x ⊗z x
explained that the tensor way of interpreting  doesn't stay within the algebra of the "single-tier" z x
vectors.  
 
But regardless, the identity  multiplied by  is real.  Indeed, there is a strong ⋅  =  x x z x x z

argument for saying that all reality goes through it: it is the basis of defining the density matrix of a 
quantum state as will come later in chapter 14.
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