

Thursday 9/9: Operations on Qubits

Here is a statement that uses a lot of notational fuss to express the simplest of ideas:

Proposition: For any $m \times n$ matrix A , $p \times q$ matrix B , n -vector \mathbf{x} and q -vector \mathbf{y} ,

$$(A \otimes B) \cdot (\mathbf{x} \otimes \mathbf{y}) = (A\mathbf{x}) \otimes (B\mathbf{y}).$$

Proof. The dimensions are consistent: both sides give a column vector of mp entries. Showing equality is where our effort to interpret vectors \mathbf{x} as functions $\mathbf{x}(u)$ of their indices in binary notation may help. Under this view, $\mathbf{z} = \mathbf{x} \otimes \mathbf{y}$ gives the function $\mathbf{z}(uv) = \mathbf{x}(u)\mathbf{y}(v)$, where uv means concatenation of binary strings, while the right-hand side is an ordinary numeric product. And a matrix A gives the two-argument function $A(u, w) = a_{u,w}$. The vector $\mathbf{x}' = A\mathbf{x}$ becomes the function mapping a row-index u to $\mathbf{x}'(u) = \sum_w A(u, w)\mathbf{x}(w)$. Thus, putting $\mathbf{z}' = (A\mathbf{x}) \otimes (B\mathbf{y})$, the right-hand side is the function

$$\mathbf{z}'(uv) = \mathbf{x}'(u)\mathbf{y}'(v) = \left(\sum_w A(u, w)\mathbf{x}(w) \right) \left(\sum_t B(v, t)\mathbf{y}(t) \right)$$

Now by usual rules of re-ordering summations, the right-hand side of this can be rearranged as

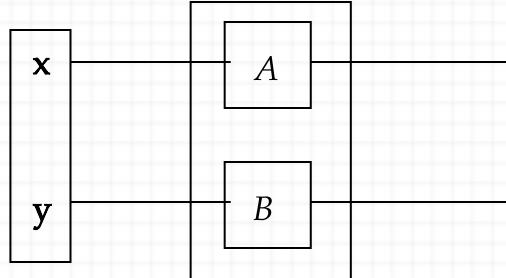
$$\sum_w \sum_t A(u, w)B(v, t)\mathbf{x}(w)\mathbf{y}(t)$$

With $\mathbf{z} = \mathbf{x} \otimes \mathbf{y}$, we can already recognize that the $\mathbf{x}(w)\mathbf{y}(t)$ part is the same as $\mathbf{z}(wt)$. And $A(u, w)B(v, t)$ is the same as $(A \otimes B)(uv, wt)$. So the whole thing becomes

$$\sum_{w,t} (A \otimes B)(uv, wt) \cdot (\mathbf{x} \otimes \mathbf{y})(wt),$$

which is exactly the meaning of $(A \otimes B) \cdot (\mathbf{x} \otimes \mathbf{y})$. So the two sides are equal. \square

The simple idea is that $(A \otimes B) \cdot (\mathbf{x} \otimes \mathbf{y})$ does the A operation on x side-by-side with B doing its operation on y , but with no connection at all between them. We will soon have diagrams like this---



---note that we picture the inputs coming in from the left but when writing them as matrix arguments they will swing around to the right. As a tandem, this is formally the tensor product $\mathbf{x} \otimes \mathbf{y}$ coming in to $(A \otimes B)$. But really---and **locally**---it is just Ax happening in one place and By happening independently in another place. The upshot is this:

When we have entanglement, not independence, between the \mathbf{x} part and the \mathbf{y} part, then the notation will stay the same but the interpretation will change a whole lot.

[Notation note: The boldfacing on vectors \mathbf{x} and \mathbf{y} is to distinguish them when strings x and y are nearby, and also to convey that they may represent specific physical quantities. The bolding of matrices has the latter idea---in particular, quantum operators like $\mathbf{H}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$ are bolded. The textbook uses a smoother bolding that I don't see how to get in MathCha.]

Reversal, Adjoint, and Duality.

The reversal x^R of a string x just means writing it "backwards": $01001^R = 10010$, $\text{FACED}^R = \text{DECAF}$, and so on. A string x is a palindrome if $x^R = x$, for instance 1001 . The empty string ϵ counts as a palindrome since $\epsilon^R = \epsilon$. The rule for reversal and concatenation is that for any strings x and y ,

$$(xy)^R = y^R x^R.$$

For example,

$$(\text{PUCK} - \text{FACED})^R = (\text{FACED})^R (\text{PUCK} -)^R = \text{DECAF} - \text{KCUP}.$$

Actually, if the minus sign is a -1 factor which could go anywhere, this would be equivalent to say "DECAF K-CUP" meaning a certain pod for a Keurig coffee-maker.

This gives intuition for how matrix transpose, matrix adjoint, and matrix inverse all work like reversal with regard to matrix product. The rules for any (invertible) matrices A and B are:

1. $(AB)^T = B^T A^T$

2. $(AB)^* = B^*A^*$
3. $(AB)^{-1} = B^{-1}A^{-1}$.

Rule 2 follows from rule 1 because the only difference with $*$ is doing complex conjugates of individual entries. Rule 3 follows since $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AA^{-1} = \mathbf{I}$. So why does rule 1 hold? Here our functional view might help: The transpose A^T is the function with the two index arguments reversed: $A^T(j, i) = A(i, j)$. So:

$$(AB)^T(i, j) = (AB)(j, i) = \sum_k A(j, k)B(k, i) = \sum_k B(k, i)A(j, k) = \sum_k B^T(i, k)A^T(k, j) = B^T A^T(i, j)$$

for all arguments (i.e., indices) i and j , so $(AB)^T = B^T A^T$. (Note that the switch $A(j, k)B(k, i) = B(k, i)A(j, k)$ in the middle step was just ordinary multiplication of numbers.)

The ideas of transpose and adjoint work also for vectors. The transpose of a column vector is a row-vector. Likewise, the adjoint \mathbf{x}^* of a column vector \mathbf{x} is a row vector. When we multiply a row vector and a column vector---in that order---we get a single number, i.e., a **scalar**. In particular,

$$\mathbf{x}^* \mathbf{x} = \sum_i \mathbf{x}^*(i) \mathbf{x}(i) = \sum_i \overline{\mathbf{x}[i]} \mathbf{x}[i] = \sum_i |\mathbf{x}[i]|^2 = \|\mathbf{x}\|^2,$$

which is just the square of the Euclidean length of the vector \mathbf{x} . Now if you buy in to the reversal rule for adjoints, we can give a short and snappy proof of Lemma 3.1 in the text.

Lemma 3.1: If \mathbf{U} is a unitary matrix and \mathbf{a} is a vector then $\|\mathbf{U}\mathbf{a}\| = \|\mathbf{a}\|$.

$$\text{Proof: } \|\mathbf{U}\mathbf{a}\| = \sqrt{\|\mathbf{U}\mathbf{a}\|^2} = \sqrt{(\mathbf{U}\mathbf{a})^*(\mathbf{U}\mathbf{a})} = \sqrt{(\mathbf{a}^*\mathbf{U}^*)(\mathbf{U}\mathbf{a})} = \sqrt{\mathbf{a}^*(\mathbf{U}^*\mathbf{U})\mathbf{a}} = \sqrt{\mathbf{a}^*\mathbf{a}} = \|\mathbf{a}\|. \blacksquare$$

The proof became a one-liner. Thus a unitary matrix always preserves the lengths of vectors, and in particular, it always maps a unit vector to a unit vector. This is what makes it "legal" from the quantum probability point of view. The fact works the other way: if a matrix \mathbf{U} always preserves the lengths of vectors, then it must be unitary.

The adjoint \mathbf{x}^* of a vector \mathbf{x} has another interpretation. It stands ready to pounce on any column vector \mathbf{y} of the same length as \mathbf{x} and wrangle it down to the scalar

$$\mathbf{x}^* \mathbf{y} = \sum_i \overline{\mathbf{x}[i]} \mathbf{y}[i] = \langle \mathbf{x}, \mathbf{y} \rangle,$$

which is the inner product of \mathbf{x} and \mathbf{y} . As such, \mathbf{x}^* defines the **linear functional** $f_{\mathbf{x}}: \mathbb{H}^n \rightarrow \mathbb{H}$ by

$$f_{\mathbf{x}}(\mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle.$$

Whereas a column vector is to be interpreted as "data", the row-vector form is "code". The resulting inner product finally suggested---to the physicist Paul Adrien Maurice Dirac in particular---to write the adjoint of \mathbf{x} as $\langle x |$ instead, to go with writing $|y \rangle$ in place of \mathbf{y} . Some nerdy things to note:

- There is no $*$ or complex-conjugation \bar{x} in $\langle x |$. The complex inner product $\langle x | y \rangle$ (if we write it that way) already does the conjugation.
- Put another way, the adjoint $|x\rangle^*$ of $|x\rangle$ is exactly what $\langle x |$ is---no further $*$ required.
- If the vector \mathbf{x} has no complex entries then $\langle \mathbf{x}, \mathbf{y} \rangle$ is the same as the ordinary real dot product $\mathbf{x} \cdot \mathbf{y} = \sum_i x[i]y[i]$ anyway.
- Hey, did you forget to write the bold for vectors? Why $\langle x |$ and $|y \rangle$ not $\langle x |$ and $|y \rangle$? The answer is that the angle brackets already identify the contents as physically meaningful vectors. Not only do they distinguish $\langle x |$ and $|y \rangle$ from strings x and y , we want to write $\langle x |$ and $|y \rangle$ precisely when x and y are strings. Such as when writing $|10010\rangle$, for instance.
- There is nothing wrong with writing $\langle \mathbf{x} |$ and $| \mathbf{y} \rangle$, in our opinion---it just might be redundant. Where this matters is in Chapter 14 where we follow the common usage of the Greek letters ϕ, ψ etc. to represent quantum states. Then writing $|\phi\rangle, |\psi\rangle$, etc., makes them look "more quantum" but usually does not have any further significance.
- If $\mathbf{z} = a\mathbf{x}$ where \mathbf{x} and \mathbf{z} are numeric vectors and a is a (possibly complex) scalar, then we have the rule $\mathbf{z}^* = \bar{a}\mathbf{x}^*$. We have to remember to conjugate any factor we pull out of the adjoint. About a minute into this Khan Faculty video they write the rules $|a\psi\rangle = a|\psi\rangle$ and $\langle a\psi | = a^*\langle \psi |$, but you have to be careful that ψ stands for a numeric vector here. It makes no sense to say e.g. that $3|1\rangle = |3\rangle$ when the $|1\rangle$ is the binary-bit attribute, nor that $3|7\rangle = |21\rangle$ if the "7" is the rank of a playing card. (Note that it is more convenient to write a^* rather than \bar{a} for the complex conjugate of a scalar, as if it were a " 1×1 " dimensioned entity. We will do so on occasion.)

The $\langle \cdot |$ form is called a **bra** to go with $| \cdot \rangle$ being a **ket** just so that the combination $\langle \cdot | \cdot \rangle$ becomes a **bracket**. The genius of the notation is liberating the inner product into a product with interchangeable parts. The bras and kets can be combined, with these resulting rules:

1. $\langle x | \cdot | y \rangle = \langle x | y \rangle$. The product dot first goes invisible, then the two vertical bars combine to be one.
2. $\langle y | x \rangle = \langle y | \cdot | x \rangle = |y\rangle^* \cdot \langle x |^* = (\langle x | \cdot | y \rangle)^* = \langle x | y \rangle^*$ by the reversal rule. So the flipped-around inner product $\langle y | x \rangle$ is just the complex conjugate of the scalar $\langle x | y \rangle$.
3. Two consecutive kets as in $|x\rangle|y\rangle$ is a gray area. It is tempting to equate it to $|x\rangle \otimes |y\rangle$ so that we could have cases like $|1\rangle|0\rangle|0\rangle|1\rangle|0\rangle = |10010\rangle$. But the product of two column vectors is not really defined. If you have something like $\langle w |$ before your $|x\rangle|y\rangle$, then you want it to become $\langle w | x \rangle \cdot |y\rangle$, where the \cdot is ordinary multiplication.

4. Two consecutive bras like $\langle x| \langle y|$ are even grayer. Would they be the adjoint of $|y\rangle|x\rangle$ or of $|x\rangle|y\rangle$? Note what happens for tensor products of matrices: For all indices u, v, w, t ,

$$(A \otimes B)^*(uv, wt) = \overline{(A \otimes B)(wt, uv)} = \overline{A(w, u)B(t, v)} = \overline{A(w, u)} \cdot \overline{B(t, v)} \\ = A^*(u, w)B^*(v, t) = (A^* \otimes B^*)(uv, wt).$$

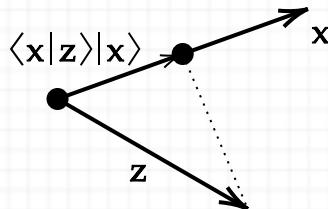
So $(A \otimes B)^* = A^* \otimes B^*$. Did you expect the A and B to reverse? Maybe not if you realize that they operate in independent systems.

5. $|x\rangle\langle y|$ --- ? The product of a $p \times 1$ column vector \mathbf{x} and a $1 \times q$ row vector \mathbf{y} is well defined algebraically. It gives a $p \times q$ matrix A of entries $A[i, j] = \mathbf{x}[i]\mathbf{y}[j]$. If \mathbf{y} is given as a numeric vector inside a bra then we have to remember to conjugate its entries, so that

$A[i, j] = \mathbf{x}[i]\overline{\mathbf{y}[j]}$. The resulting matrix A has rank one---so it is as far from being invertible as possible without being the zero matrix. It is called the **outer product** and has the following important relation to inner product when given any column vector $|z\rangle$: It pounces on $|z\rangle$, wrangles it into the scalar $a = \langle y|z\rangle$, and multiplies $|x\rangle$ by that.

6. In particular, the outer product $|x\rangle\langle x|$ of a vector $|x\rangle$ with itself becomes an operator that makes any vector $|z\rangle$ multiply $|x\rangle$ by the extent to which $|z\rangle$ itself aligns with $|x\rangle$. This gives the **projection** of $|z\rangle$ onto $|x\rangle$. One rule of projections is that repeating it doesn't change the result, at least not when $|x\rangle$ is a unit vector: $|x\rangle\langle x|$ applied to $(|x\rangle\langle x|)|z\rangle$ gives

$$|x\rangle\langle x|(|x\rangle\langle x|)|z\rangle = |x\rangle\langle x|x\rangle\langle x|z\rangle = |x\rangle\langle x|z\rangle = \langle x|z\rangle|x\rangle \text{ since } \langle x|z\rangle \text{ is a scalar.}$$



The issues with the possible rules 3 and 4 still make us suspicious of Dirac notation and require being careful with $\langle x|z\rangle|x\rangle$ here. Can we read it as the single-tier bra $\langle x|$ multiplying the double-tier quantity $|z\rangle|x\rangle$ read as $|z\rangle \otimes |x\rangle$? Then the dimensions don't even align for multiplying on the left by the row vector $\langle x|$. The issue is that the "invisible dot" between the $|z\rangle$ and the $|x\rangle$ is a scalar product in $\langle x|z\rangle|x\rangle$, but gets morphed into a tensor product in $|z\rangle \otimes |x\rangle$. In online forums one can find it explained that the tensor way of interpreting $|z\rangle|x\rangle$ doesn't stay within the *algebra* of the "single-tier" vectors.

But regardless, the identity $(|x\rangle\langle x|) \cdot |z\rangle = |x\rangle$ multiplied by $\langle x|z\rangle$ is real. Indeed, there is a strong argument for saying that all reality goes through it: it is the basis of defining the **density matrix** of a quantum state as will come later in chapter 14.