Thursday 9/9: Operations on Qubits

Here is a statement that uses a lot of notational fuss to express the simplest of ideas:

Proposition: For any m X n matrix A, p X g matrix B, n-vector x and g-vectory,
(A®B)- (x®Y) = (AX)® (By).

Proof. The dimensions are consistent: both sides give a column vector of mp entries. Showing
equality is where our effort to interpret vectors x as functions x(u) of their indices in binary notation may
help. Under this view, z = x®y gives the function z(1v) = x(u)y(v), where uv means
concatenation of binary strings, while the right-hand side is an ordinary numeric product. And a matrix
A gives the two-argument function A(u, w) = a,,. The vector X" = Ax becomes the function

mapping a row-index u to X'(1) = X, A(u, w)x(w). Thus, putting z’ = (Ax) ® (By), the right-hand
side is the function

z'(uv) = X'(wy'(v) = (EwA(u, w)x(w)) (ZtB(v, t)y(t)]

Now by usual rules of re-ordering summations, the right-hand side of this can be rearranged as

2 20 A, w)B(v, H)x(w)y(t)

Withz = x®y, we can already recognize that the x(w)y(t) part is the same as z(wt). And
A(u, w)B(v, t) is the same as (A ® B)(uv, wt). So the whole thing becomes

E w’t(A ® B)(uv, wt) - (x®@y)(wt),

which is exactly the meaning of (A® B) - (x®y). So the two sides are equal.

The simple idea is that (A ® B) - (x®y) does the A operation on x side-by-side with B doing its
operation on vy, but with no connection at all between them. We will soon have diagrams like this---

---note that we picture the inputs coming in from the left but when writing them as matrix arguments
they will swing around to the right. As a tandem, this is formally the tensor product X ® y coming in to
(A ® B). But really---and locally---it is just Ax happening in one place and By happening
independently in another place. The upshot is this:

When we have entanglement, not independence, between the x part and the y part, then the
notation will stay the same but the interpretation will change a whole lot.

[Notation note: The boldfacing on vectors x and y is to distinguish them when strings x and y are
nearby, and also to convey that they may represent specific physical quantities. The bolding of
matrices has the latter idea---in particular, quantum operators like H, X, Y, Z are bolded. The textbook
uses a smoother bolding that | don't see how to get in MathCha.]

Reversal, Adjoint, and Duality.

The reversal xR of a string x just means writing it "backwards": 01001% = 10010, FACEDR = DECAF,
and so on. A string x is a palindrome if xR = x, for instance 1001. The empty string € counts as a
palindrome since e® = €. The rule for reversal and concatenation is that for any strings x and Y,

(a)® =yt

For example,
(PUCK - FACED)R = (FACED)R(PUCK —)R = DECAF -KCUP.

Actually, if the minus sign is a —1 factor which could go anywhere, this would be equivalent to say
"DECAF K-CUP" meaning a certain pod for a Keurig coffee-maker.

This gives intuition for how matrix transpose, matrix adjoint, and matrix inverse all work like reversal
with regard to matrix product. The rules for any (invertible) matrices A and B are:

1.(AB)T = BTAT

2. (AB)" = B'A*
3.(AB)"! = B4

Rule 2 follows from rule 1 because the only difference with * is doing complex conjugates of individual
entries. Rule 3 follows since (AB)(B'A™') = ABB'A™' = AA™' = 1. Sowhy does rule 1

hold? Here our functional view might help: The transpose AT is the function with the two index
arguments reversed: A'(j,i) = A(i,). So:

(AB)'(i, j) = (AB)(j, i) = X, A(j, W)B(k, i) = X, Bk,)A(j, k) = ¥, BT (i, AT (k, j) = BTAT (i, j)

for all arguments (i.e., indices) i and j, so (AB)T = BTAT. (Note that the switch
A(j, k)B(k, i) = B(k,1)A(j, k) in the middle step was just ordinary multiplication of numbers.)

The ideas of transpose and adjoint work also for vectors. The transpose of a column vector is a row-

vector. Likewise, the adjoint X* of a column vector X is a row vector. When we multiply a row vector
and a column vector---in that order---we get a single number, i.e., a scalar. In particular,

x'x = L x'(@x(0) = Z,xlix[] = X Ix1* = [1xI1?,

which is just the square of the Euclidean length of the vector x. Now if you buy in to the reversal rule
for adjoints, we can give a short and snappy proof of Lemma 3.1 in the text.

Lemma 3.1: If U is a unitary matrix and a is a vector then ||Ua|| = ||a||.

Proof: |[Ual| = V/||Ual|? = V(Ua)*(Ua) = 4/ (a"U*) (Ua) = /a*(UU)a = Va'a = ||a|| &

The proof became a one-liner. Thus a unitary matrix always preseves the lengths of vectors, and in
particular, it always maps a unit vector to a unit vector. This is what makes it "legal" from the quantum
probability point of view. The fact works the other way: if a matrix U always preserves the lengths of
vectors, then it must be unitary.

The adjoint X* of a vector X has another interpretation. It stands ready to pounce on any column vector
y of the same length as x and wrangle it down to the scalar

x'y = 2. x[iyli] = (x,y),

which is the inner product of x and y. As such, x* defines the linear functional fx : H" — H by

fx(Y) = <XrY>-

Whereas a column vector is to be interpreted as "data", the row-vector form is "code". The resulting
inner product finally suggested---to the physicist Paul Adrien Maurice Dirac in particular---to write the
adjoint of x as (x| instead, to go with writing |y> in place of y. Some nerdy things to note:

+ There is no * or complex-conjugation X in {x|. The complex inner product (x|y) (if we write it
that way) already does the conjugation.

« Put another way, the adjoint |x)" of | x) is exactly what {x | is---no further * required.
« If the vector x has no complex entries then (X, y) is the same as the ordinary real dot product

x-y = X.x[iyli] anyway.

« Hey, did you forget to write the bold for vectors? Why {x|and |y) not {x| and |y)? The
answer is that the angle brackets already identify the contents as physically meaningful vectors.
Not only to they distinguish {x| and |y from strings x and y, we want to write {x| and |y)
precisely when x and y are strings. Such as when writing 10010}, for instance.

« There is nothing wrong with writing {x| and |y, in our opinion---it just might be redundant.
Where this matters is in Chapter 14 where we follow the common usage of the Greek letters
¢, P etc. to represent quantum states. Then writing |¢), |1), etc., makes them look "more
quantum" but usually does not have any further significance.

* Ifz = ax where x and z are numeric vectors and a is a (possibly complex) scalar, then we have
therule z* = ax*. We have to remember to conjugate any factor we pull out of the adjoint.
About a minute into this Knhan Faculty video they write the rules |ay) = ali) and

Cay| = a*{y|, but you have to be careful that 1 stands for a numeric vector here. It makes no
sense to say e.g. that 3|1) = |3) when the | 1) is the binary-bit attribute, nor that
3|7) = |21) if the "7" is the rank of a playing card. (Note that it is more convenient to write a*

rather than a for the complex conjugate of a scalar, as if it were a "1 X 1" dimensioned entity.
We will do so on occasion.)

The < - | form is called a bra to go with | -) being a ket just so that the combination { - | -) becomes a
bracket. The genius of the notation is liberating the inner product into a product with interchangeable
parts. The bras and kets can be combined, with these resulting rules:

1.<{x|-ly) = {x|y). The product dot first goes invisible, then the two vertical bars combine to
be one.

2.{ylxy =<yl 1xy = |y (x| = ((xI - |y>)* = {x|y)" by the reversal rule. So the
flipped-around inner product {y|x) is just the complex conjugate of the scalar {x|y}.

3. Two consecutive kets as in |x)|y) is a gray area. Itis tempting to equate it to |x) ® |y) so that
we could have cases like |1>|0)|0)|1)|0) = |10010). But the product of two column vectors
is not really defined. If you have something like {w | before your | x)|y), then you want it to
become {w|x) -|y), where the - is ordinary multiplication.

4. Two consecutive bras like {x|{y| are even grayer. Would they be the adjoint of |y)|x) or of
|x)|y>? Note what happens for tensor products of matrices: For all indices u, v, w, t,

(A®B)*(uv,wt) = (A®B)(wt,uv) = A(w,u)B(t,v) = A(w,u)- B(t,v)
= A*(u,w)B*(v,t) = (A*®B*)(uv,wt).

So (A®B)* = A*®B*. Did you expect the A and B to reverse? Maybe not if you realize that
they operate in independent systems.

5.|x)<{y|--? The product of a p X 1 column vector X and a 1 X g row vector y is well defined
algebraically. It gives a p X g matrix A of entries A[i, j]] = x[i]y[j]. If y is given as a numeric
vector inside a bra then we have to remember to conjugate its entries, so that

Ali, j1 = x[i]ylj]. The resulting matrix A has rank one---so it is as far from being invertible as
possible without being the zero matrix. It is called the outer product and has the following
important relation to inner product when given any column vector |z): It pounces on |z),
wrangles it into the scalar a = {y|z), and multiplies | x) by that.

6. In particular, the outer product |x)»{x| of a vector | x) with itself becomes an operator that
makes any vector | z) multiply |x) by the extent to which |z) itself aligns with | x). This gives
the projection of |z) onto |x). One rule of projections is that repeating it doesn't change the

result, at least not when | x) is a unit vector: |x)<x/| applied to (|x><x |) |z) gives

el (Ix)<x) [2) = Je)<xladdxlz) = |x)<x|z) = {x|z)|x) since (x|z) is a scalar.

The issues with the possible rules 3 and 4 still make us suspicious of Dirac notation and require being
careful with {x|z)|x) here. Can we read it as the single-tier bra {x | multiplying the double-tier
quantity | z)|x) read as |z) ®|x)? Then the dimensions don't even align for multiplying on the left by
the row vector {x|. The issue is that the "invisible dot" between the |z) and the |x) is a scalar product
in {x|z)|x), but gets morphed into a tensor productin |z) ® |x). In online forums one can find it
explained that the tensor way of interpreting |z)|x) doesn't stay within the algebra of the "single-tier"
vectors.

But regardless, the identity (Ix)(xl) -|z> = |x)> multiplied by {x|z) is real. Indeed, there is a strong

argument for saying that all reality goes through it: it is the basis of defining the density matrix of a
guantum state as will come later in chapter 14.

