
 
CSE610 Week 3: Quantum Computations and Circuits
 
How to Get Entanglement
 
Here is a matrix whose understanding is key.  Its standard name is  for "controlled-NOT"; this is CNOT

sometimes abbreviated to .  CX

 

. CNOT =  

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 
Some observations:
 

1. This is a permutation matrix, and as-such is unitary.  
2. It is also real symmetric, so it is Hermitian too.
3. It is not a tensor product of two  matrices.  To prove this, represent the matrices by 2 × 2

 and .  Then  .  In order for this to equal A =  
a b
c d

B =  
e f
g h

A⊗B =  

ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

, we would have to solve , , and .  But these three are already CNOT ag = 0 ae = 1 dg = 1

impossible.
4. Hence,  does not operate on each "tier" separately.  As a  matrix, it acts on two CNOT 4 × 4

qubits, because we have  with  and .  So each tier is a qubit, but N =  4 =  dn d = 2 n = 2

 has a joint action on the pair, not just on each qubit separately.CNOT

 

A simple example of a  matrix that is a tensor product is .  Well, it is 4 × 4 H⊗ I =  
1

2

1 0 1 0

0 1 0 1

1 0 -1 0

0 1 0 -1

really acting only on the first qubiot, because it is the identity on the second qubit.  Now let us compose 
it with , applying  first to whatever input  is given, say .  To compose the CNOT H⊗ I x x = 00

matrices, we have to remember to put  on the right.  So the computationH⊗ I

 

 CNOT ⋅  H⊗ I ⋅  =   ⋅ ⋅( ) 00

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

2

1 0 1 0

0 1 0 1

1 0 -1 0

0 1 0 -1

1

0

0

0

 
can be reduced by multiplying the matrices first or by multiplying  first.  The latter is more H⊗ I( ) 00

efficient and we get 

 

 



 

. ⋅  =   =  

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

2

1

0

1

0

1

2

1

0

0

1

 +  00 11

2

 
This is the entangled state we saw before.  We can diagram what happened as
 

 
The entangled kitten image actually comes from a story in Britain's New Scientist magazine titled 
"Entangle Schrödinger's Cat to up its quantum weirdness." Come-on, it's just the vector , 1, 0, 0, 1[ ]

folks.  It does, however, already warn us that whereas Boolean circuits always have a definite local bit 
value on every wire coming into or out of a gate, that won't be true in quantum circuits.
 
We could instead regard  as an operator on our representation of playing card suits, where CNOT

taking the order clubs-diamonds-hearts-spades used in bridge, we have:
 

,   ,   ,   . =  ♣

1

0

0

0

 =  ♢

0

1

0

0

 =  ♡

0

0

1

0

 =  ♠

0

0

0

1

 

Then , but this is not entangled---it's still a single-tier system.  In order to  =  
1, 0, 0, 1[ ]T

2

+♣ ♠

2
have entanglement, there must be a representation of two separate physical systems that interact.  
Thus entanglement is not an innate mathematical property of the vector .1, 0, 0, 1[ ]

 
We could try to make it entangled by using a 2-bit binary code for the suits.  The first bit could be 0 for 
minor suit, 1 for major suit.  The second bit could be 0 for black suit, 1 for red suit.  Then we'd have 

, , thus far agreeing with the standard coding, but  rather than , =♣ 00 =♢ 01 =♡ 11 10

and  under this code.  So  would become the code for=♠ 10 1, 0, 0, 10.5[ ]T

 

, =   =  ⊗
+♣ ♠

2

+00 10

2

+0 1

2
0

 

 

H0

0 I

CNOT

We can't say we have
separate values  y
and  on the wires z
anymore, because the
state does not equal
any tensor product of
the form .⊗y z

https://www.newscientist.com/article/dn22453-entangle-schrodingers-cat-to-up-its-quantum-weirdness/


 
which is separable---so not entangled.  In order to minic the standard two-qubit code, we should define 
the second bit to be 1 if the suit symbol has a pointed top, 0 for a rounded top.  Then we get 

, , and now  and  as desired.  If it really made sense for =♣ 00 =♢ 01 =♡ 10 =♠ 11

"minor/major" and "rounded/pointy" to be attributes of interacting physical entities, then we could say 
that  is entangled.  When they are, the effect is the same as if the deck has only black cards: +♣ ♠

you can never draw a card that is major but not pointy (hears) or a card that is pointy but minor 
(diamonds).  
 
Note that under both of these codes for suits,  has the effect of switching  and .  So CNOT ♡ ♠

 switches between these coding schemes.  This is all the more a reason to stick with the CNOT

standard basis and binary code order at first, avoiding such "relative" coding issues for the time being.  
So long as the standard code truly represents a real physical system, entanglement as modeled in the 
mathematical representation corresponds to real physical entanglement.
 
 
 
More about CNOT
 
Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis, 
the values are: , , CNOTe  =  CNOT  =  00 00 00 CNOTe  =  CNOT  =  01 01 01

, and .  We can get these CNOTe  =  CNOT  =  10 10 11 CNOTe  =  CNOT  =  11 11 10

from the respective columns of the  matrix, and we can also label the quantum coordinates right CNOT

on it:
 

 
Because we multiply column vectors, the co-ordinates of the argument vector come in the top and go 
out to the left.  If the first qubit is , then the whole gate acts as the identity.  But if the first qubit is , 0 1

then the basis value of the second qubit gets flipped---the same action as the NOT gate .  Hence the X

name Controlled-NOT, abbreviated : the NOT action is controlled by the first qubit.  The action CNOT

on a general 2-qubit quantum state  is even easier to picture:𝜙 =  a, b, c, d( )

 

 

 

 00 01 10 11

00 1 0 0 0

01 0 1 0 0

10 0 0 0 1

11 0 0 1 0



.CNOT  =  

a
b
c
d

a
b
d
c

 
All it does is switch the third and fourth components---of any 4-dim. state vector.  Hence,  is a CNOT

permutation gate and is entirely deterministic.  Permuting these two indices is exactly what we need to 

transform the separable state  into the entangled state .  1, 0, 1, 0
1

2
( ) 1, 0, 0, 1

1

2
( )

 
The symbol for a CNOT gate is to use a black dot to represent the control on the source qubit and  ⊕

(which I have used as a symbol for XOR) on the target qubit.  This is more easily pictured by a quantum 
circuit diagram:

If , then we can tell exactly what  is: it is the  state.  And if , then .  If x  =  1 0 y + x  =  1 1 y =  -
 is any separate qubit state , then by linearity we know that x1 a, b  =  a  +  b( ) 0 1

.  This expresses  over the transformed basis; in the standard basis it isy =  a  +  b+ - y
 

.  a 1, 1 + b 1, -1  =  a + b, a - b  
1

2
( ( ) ( ))

1

2
( )

 
So we can say exactly what the input coming in to the first "wire" of the CNOT gate is.  And the input to 
the second wire is just whatever  is.  But because that gate does entanglement, we cannot specify x2

individual values for the wires coming out.  The state is an inseparable 2-qubit state:
 

. +  
1

2
00 11

 
If you measure either qubit individually, you get  or  with equal probability.  This is the same as if you 0 1

measured the state .  But that state is outwardly as well as inwardly different.   =  1, 1, 1, 1++
1

2
[ ]T

When both qubits are to be measured, it allows  and  as possible outcomes, whereas measuring 01 10

the entangled state does not.  (We will cover measurements in more detail after circuits.)
 
 
 
 
 

 

 



Three Qubits and More
 
The CNOT gate by itself has the logical description  and .  This means that if z  =  x1 1 z  = x  ⊕  x2 1 2

 then , but if  then .  Since this description is complete for all of the x  =  01 z  =  x2 2 x  =  11 z  =  ¬x2 2

standard basis inputs , it extends by linearity to all quantum states.  We x =  x x  =  00, 01, 10, 111 2

can use this idea to specify the 3-qubit Toffoli gate (Tof).  It has inputs  and symbolic outputs x , x , x1 2 3

 (which, however, might not have individual values in non-basis cases owing to entanglement). z , z , z1 2 3

 Its spec in the basis quantum coordinates is:
 

, , .  z  =  x1 1  z  =  x2 2 z  =  x  ⊕  x  ∧  x3 3 ( 1 2)

 

 
Of particular note is that if  is fixed to be a constant-  input, then x3 1

 
.z  =  ¬ x  ∧  x  =  NAND x , x3 ( 1 2) ( 1 2)

 
Thus the Toffoli gate subsumes a classical NAND gate, except that you need an extra "helper wire" to 
put  and you gate two extra output wires  that only compute the identity on  (in x  =  13 z , z1 2 x , x1 2

classical logic, that is---a non-basis quantum state can have knock-on effects even though all Toffoli 
does is switch the 7th and 8th components of the state vectors).  If you have  Toffoli gates, then you m
get only order-of  wastage of wires, and you can use the good ones to simulate any Boolean circuit of m

 NAND gates.  This already tells us a key fact:m
 
Theorem: Classical Boolean circuits can be efficiently simulated by quantum circuits that don't even do 
any superposition or entanglement.
 
Here is a sizable example of this theorem.  Consider the following circuit of NAND gates from the blog 
article "Implementing Logic Functions Using Only NAND or NOR Gates" by Max Maxfield:
 

 

 

x1

x2

x3

z1

z2

z3

 000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 1 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 0 0 0 0 1

111 0 0 0 0 0 0 1 0

https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/
https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/


 
There are six important gates at the very beginning that are not colored or emphasized.  Those are the 
bit-splitters, which collectively make three copies of each of the inputs .  Doing so is trivial in A, B, C
classical circuits but needs attention in quantum circuits, where we shall see that copying is essentially 
allowed only on basis states and only with extra "helper" qubits initialized to zero (that is, to ).  0

Indeed, the CNOT gate can do the copies by itself, because for  we haveb = 0, 1

 
.CNOT ⋅ ⊗  =  ⊗b 0 b b

 
Again, this is only true for the basis states  and , not for a general qubit value in =b 0 =b 1

place of .  The pink gates use two copies fed into the same NAND gate only to make a unary NOT b
gate, so we can economically use the  gate for that.  We can also use  to change a helper qubit from X X

its  initialization to give  coming into the target of the Toffoli gate, which is what we need to make 0 1

it simulate NAND.  The green gate at right is a 3-way NAND, for which we fabricate a "4-way Toffoli" 
gate---or put another way, a triple-controlled bit-flip.  Here is the circuit:
 

 
The "quantum extra", beginning with using the Hadamard gate to create superpositions, is what 
promises to take us beyond classical computing.

 

 

a

b

c
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0

0

0

0
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X

X

a⏨

b⏨

c⏨

X

X

X
d

(We will later
mirror the gates
except the last
one giving the
function value d
in order to reset
the ancilla qubits
4--8 to , so0

that all qubits
except the last 
keep their given
basis values.)



 
 
Interlude: Larger Unitary Matrices
 
[This will cover Section 3.6.  The purposes are:

• to introduce the notion of an (undirected) graph.
• to illustrate how the adjacency matrix  of a regular graph  is doubly stochastic, which is AG G

the classical-probability analogue of being unitary.
• to show a case where  can be converted into a  unitary matrix by making some entries AG 4 × 4

negative (and then scaling every entry by the same constant factor).
• to show a different case of a regular graph---the six-node prism graph---where this cannot be 

done.
• to talk about larger unitary matrices---how they technically arise by tensor products with the 

identity matrix when you have  qubits, but why in practice we can break every circuit down into n
gate matrices of Toffoli size or smaller.

This also sets up some motivation for Chapter 16, the first "topics" chapter.]
 
 
Quantum Circuits on  Qubitsn
 
[This will skim over the initial part of chapter 4 with not so much emphasis on complexity and Turing 
machines, making a beeline for the examples in section 4.5.]

 

 


