CSE610 Week 3: Quantum Computations and Circuits
How to Get Entanglement

Here is a matrix whose understanding is key. Its standard name is CNOT for "controlled-NOT"; this is
sometimes abbreviated to CX.

CNOT =

oo o
o O = O
— O O O
O = O O

Some observations:

1. This is a permutation matrix, and as-such is unitary.
2. It is also real symmetric, so it is Hermitian too.
3. It is not a tensor product of two 2 X 2 matrices. To prove this, represent the matrices by

ae af be bf

A = li Z]andB = [2 i] Then A®B = ifg Z? ng Zlf . In order for this to equal
cg ch dg dh

CNOT, we would have to solve ag = 0, ae = 1, and dg = 1. But these three are already

impossible.

4. Hence, CNOT does not operate on each "tier" separately. As a 4 X 4 matrix, it acts on two
qubits, because we have N = 4 = 4" withd = 2 and n = 2. So each tier is a qubit, but
CNOT has a joint action on the pair, not just on each qubit separately.

10 1 0
1
A simple example of a 4 X 4 matrix that is a tensor productis H®I = 7_ (1) (1) 01 (1) . Well, it is
> _
01 0 -1

really acting only on the first qubiot, because it is the identity on the second qubit. Now let us compose
it with CNOT, applying H®1 first to whatever input | x) is given, say x = 00. To compose the
matrices, we have to remember to put H®I on the right. So the computation

1000 101 O 1
1
CNOT - HeD |00y = [0 100 201 0 14710
0001 \/510—10 0
0010 01 0 -1]10

can be reduced by multiplying the matrices first or by multiplying (H®1)|00) first. The latter is more
efficient and we get

1000 1 1

o100 1jo|_ 1 fof_ [00)+]11)

0001 1 0 '
2 2 2

0010\[0 \fl Va2

This is the entangled state we saw before. We can diagram what happened as

We can't say we have
separate values |y
and |z) on the wires
anymore, because the
state does not equal
any tensor product of
the form |y) ®|z).

10> H

CNOT

10> I

The entangled kitten image actually comes from a story in Britain's New Scientist magazine titled
"Entangle Schrodinger's Cat to up its quantum weirdness." Come-on, it's just the vector [1,0,0, 1],
folks. It does, however, already warn us that whereas Boolean circuits always have a definite local bit
value on every wire coming into or out of a gate, that won't be true in quantum circuits.

We could instead regard CNOT as an operator on our representation of playing card suits, where
taking the order clubs-diamonds-hearts-spades used in bridge, we have:

|&) = . 10y = |0y = &) =

o O O
S O = O
o ~r OO
r—\0.00

[1,0,0,1]7 |#)+|a)

V2 V2
have entanglement, there must be a representation of two separate physical systems that interact.
Thus entanglement is not an innate mathematical property of the vector [1,0, 0, 1].

Then

, but this is not entangled---it's still a single-tier system. In order to

We could try to make it entangled by using a 2-bit binary code for the suits. The first bit could be 0 for
minor suit, 1 for major suit. The second bit could be 0 for black suit, 1 for red suit. Then we'd have
&) =100, |¢) = |01), thus far agreeing with the standard coding, but |¥) = |11) rather than |10),

and |#) = |10) under this code. So V0.5[1,0,0,1]T would become the code for

#)+18) _ 100y +]10) _ [|o>+|1>

V2 Ve Vvl]®'0>’

https://www.newscientist.com/article/dn22453-entangle-schrodingers-cat-to-up-its-quantum-weirdness/

which is separable---so not entangled. In order to minic the standard two-qubit code, we should define
the second bit to be 1 if the suit symbol has a pointed top, 0 for a rounded top. Then we get

|#> =100,]¢> =]01), and now |©) = |10) and |#) = |11) as desired. Ifit really made sense for
"minor/major" and "rounded/pointy" to be attributes of interacting physical entities, then we could say
that |#) + |#) is entangled. When they are, the effect is the same as if the deck has only black cards:
you can never draw a card that is major but not pointy (hears) or a card that is pointy but minor
(diamonds).

Note that under both of these codes for suits, CNOT has the effect of switching |©) and |#). So
CNOT switches between these coding schemes. This is all the more a reason to stick with the
standard basis and binary code order at first, avoiding such "relative" coding issues for the time being.
So long as the standard code truly represents a real physical system, entanglement as modeled in the
mathematical representation corresponds to real physical entanglement.

More about CNOT

Any linear operator is uniquely defined by its values on a particular basis, and on the standard basis,
the values are: CNOTey, = CNOT|00> = |00), CNOTey; = CNOT|01) = |01),

CNOTe;; = CNOT|10) = |11), and CNOTe;; = CNOT|11) = |10). We can get these
from the respective columns of the CNOT matrix, and we can also label the quantum coordinates right
on it:

EBESUT: J8%) (185 (158 I
01 0 0 b
01101
<1000?1
44100 0

Because we multiply column vectors, the co-ordinates of the argument vector come in the top and go
out to the left. If the first qubit is 0, then the whole gate acts as the identity. But if the first qubit is 1,
then the basis value of the second qubit gets flipped---the same action as the NOT gate X. Hence the
name Controlled-NOT, abbreviated CNOT: the NOT action is controlled by the first qubit. The action
on a general 2-qubit quantum state qb = (a,b,c,d) is even easier to picture:

CNOT

QU O S
O xS R

All it does is switch the third and fourth components---of any 4-dim. state vector. Hence, CNOT is a
permutation gate and is entirely deterministic. Permuting these two indices is exactly what we need to

transform the separable state %(1, 0,1, 0) into the entangled state iz(l, 0,0,1).

Vi V2

The symbol for a CNOT gate is to use a black dot to represent the control on the source qubit and &
(which | have used as a symbol for XOR) on the target qubit. This is more easily pictured by a quantum
circuit diagram:

X1 H Z

(7)
X2 an!

21
[B]

If x; = |0, then we can tell exactly what i is: it is the |+) state. Andifx; = |[1),theny = [-). If
X, is any separate qubit state (a,b) = a|0) + b|1), then by linearity we know that
y = al+) + bl-). This expresses y over the transformed basis; in the standard basis it is

LD b)) = Fa+ba-b).

So we can say exactly what the input coming in to the first "wire" of the CNOT gate is. And the input to
the second wire is just whatever x; is. But because that gate does entanglement, we cannot specify
individual values for the wires coming out. The state is an inseparable 2-qubit state:

1
—(]00) + |11)).
75(00) + [11))
If you measure either qubit individually, you get 0 or 1 with equal probability. This is the same as if you
measured the state |++) = %[1, 1,1,1]7. But that state is outwardly as well as inwardly different.

When both qubits are to be measured, it allows 01 and 10 as possible outcomes, whereas measuring
the entangled state does not. (We will cover measurements in more detail after circuits.)

Three Qubits and More

The CNOT gate by itself has the logical description z; = x7 andz, = x7 @& Xxp. This means that if
x1 = 0thenz, = x,,butifx; = 1thenz, = —x,. Since this description is complete for all of the
standard basis inputs x = x;x, = 00,01,10,11, it extends by linearity to all quantum states. We
can use this idea to specify the 3-qubit Toffoli gate (Tof). It has inputs x4, x,, X3 and symbolic outputs
Z1,Z2,2z3 (which, however, might not have individual values in non-basis cases owing to entanglement).
Its spec in the basis quantum coordinates is:

Z1 = X1, Z2 = X2,23 = X3 @ (X1 A x2).

000 001 010 011 100 101 11Q 117
X1 7 000: {1 R0 EH O O RO RO R HO
Q0L 0 R e 0RO O RO RO HO
B0 BE 6 I8ERNRI) ARERARI TAREEa(6 AN En) Enaa e blemae(3) Al
*2 42 D)1 iR SR VIR S AR aa IR Sa R R e D ERaa S V| R A R0) AT
118]0 21 SE0EER2RIDERERLH QITRERNI() MSRERY) RESREN (| EESREINE) EA2HL)
X3 N 23 TR BEE R ERa Rl RRERaH QIRRERR () ISREET A EISAELIARERARIAE | HA2TY)
1000000 00 Y
53 (£ G U RS MR EE g RN GV EETA RN, A30g13E)

Of particular note is that if x5 is fixed to be a constant-1 input, then
zz = —(x1 A x3) = NAND(x1,x5).

Thus the Toffoli gate subsumes a classical NAND gate, except that you need an extra "helper wire" to
put x3 = 1 and you gate two extra output wires z7, z, that only compute the identity on x;, x5 (in
classical logic, that is---a non-basis quantum state can have knock-on effects even though all Toffoli
does is switch the 7th and 8th components of the state vectors). If you have m Toffoli gates, then you
get only order-of m wastage of wires, and you can use the good ones to simulate any Boolean circuit of
m NAND gates. This already tells us a key fact:

Theorem: Classical Boolean circuits can be efficiently simulated by quantum circuits that don't even do
any superposition or entanglement.

Here is a sizable example of this theorem. Consider the following circuit of NAND gates from the blog_
article "Implementing Logic Functions Using Only NAND or NOR Gates" by Max Maxfield:

https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/
https://www.eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/

There are six important gates at the very beginning that are not colored or emphasized. Those are the
bit-splitters, which collectively make three copies of each of the inputs A, B, C. Doing so is trivial in
classical circuits but needs attention in quantum circuits, where we shall see that copying is essentially
allowed only on basis states and only with extra "helper" qubits initialized to zero (that is, to | 0)).
Indeed, the CNOT gate can do the copies by itself, because for b = 0,1 we have

CNOT- (1) ®10)) = [bY®|b).

Again, this is only true for the basis states |b) = |0) and |b) = |1), not for a general qubit value in
place of |b). The pink gates use two copies fed into the same NAND gate only to make a unary NOT
gate, so we can economically use the X gate for that. We can also use X to change a helper qubit from
its |0) initialization to give | 1) coming into the target of the Toffoli gate, which is what we need to make
it simulate NAND. The green gate at right is a 3-way NAND, for which we fabricate a "4-way Toffoli"
gate---or put another way, a triple-controlled bit-flip. Here is the circuit:

) ’ ® (We will later

|b) ’ mirror the gates
B , except the last
— one giving the
10>) E f function value d
10) f) E b ? in order to reset
v the ancilla qubits
107) E 1 ® 4--8t0 |0), so
10) X1 q that all qubits
10) E C) except the Igst
d keep their given
|0) @ o basis values.)

The "quantum extra", beginning with using the Hadamard gate to create superpositions, is what
promises to take us beyond classical computing.

Interlude: Larger Unitary Matrices

[This will cover Section 3.6. The purposes are:

to introduce the notion of an (undirected) graph.

to illustrate how the adjacency matrix A of a regular graph G is doubly stochastic, which is
the classical-probability analogue of being unitary.

to show a case where A can be converted into a 4 X 4 unitary matrix by making some entries
negative (and then scaling every entry by the same constant factor).

to show a different case of a regular graph---the six-node prism graph---where this cannot be
done.

to talk about larger unitary matrices---how they technically arise by tensor products with the
identity matrix when you have n qubits, but why in practice we can break every circuit down into
gate matrices of Toffoli size or smaller.

This also sets up some motivation for Chapter 16, the first "topics" chapter.]

Quantum Circuits on 7 Qubits

[This will skim over the initial part of chapter 4 with not so much emphasis on complexity and Turing
machines, making a beeline for the examples in section 4.5.]

