Interlude: Graphs and Graph States

1 0

. Th
0—1] ©

Related to the CNOT gate is the controlled version of the Z gate. Recall Z = l

controlled version of any matrix A (in the standard basis) is the block matrix

Ou |1u
CA=0u|TI|O0,
u| 0 | A

where the hierarchical quantum indexing scheme is also shown. If the first qubit is O then the effect ios
the identity, while if it is 1, then the effect on the remainder | 1) is to apply A. So

Cz =

S O O
o O = O
SO = OO

o O O

Although the control is nominally on the first qubit, with CZ the effect on base states is to multiply the
global state by —1 if and only if both qubits are 1. Hence it is really symmetric---the second qubit could
equally be said to be controlling the first. The standard diagram for it is just two black

dots connected by themselves:

|a)

by

Since a general vector 11, 1y, Uz, 114]" becomes [uy, un, 5, — 4] after going through CZ, it
follows, upon writing |a) = [a1,a,]T and |b) = [by, by]7, that

CZ-(la>®|b)) = CZ-[arby,arby, azby,azb3] = [a1by,a1by,a2b1, —azbs] .

Is this ever entangled, and if so, when? Note that if |a) and |b) are both |1), then
CZ- (|a>®|b>) = CZ|11) = CZ-[0,0,0,1]T = [0,0,0,-1] . To try to represent this as a

h
fh =-1. Thisis easy to solve with f = 1 and h = -1, or even f = h = i since we can use complex
numbers. But now let |a) and |b) both be |+). Then we get

tensor product lo| S| = eh, fe, fh]T, we need both e and ¢ to be 0, so we are left with
f 8 8 8



CzZl++) = CZ-11,1,1,117 = Y1,1,1,-1".

For determining entanglement we can ignore the % factor. So the equations become eg = 1,eh =1,

1

fg=1,and fh = —1. The first three combine to give g = — = h,so fg = fh =1, but that
e

contradicts the fourth equation fi = —1. Thus CZ|++) is entangled. It follows that

It is possible for a quantum gate to leave one separable state separable while making
another separable state become entangled.

Now CZ gates are especially neat because they look like edges in a graph G = (V/, E), specifically
an undirected graph because the gates are symmetric. Let's first see some examples of graphs. The
cycle graphs Cj have k vertices (also called nodes) and k edges connecting them in a ring, for k > 3.
The four-cycle graph has the following picture and adjacency matrix:

1 2
0110 01 1 0
1001 1 s 11100 1
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i-orpHHAH L Va|10 0 -1
i i 0110 01 -1 0

Note: This differs from the text only in the labels 3 and 4. This makes it maybe easier to see that not
only is A not unitary, it isn't even invertible: rows 2 and 3, and rows 1 and 4, are identical. But:

« A is a real symmetric matrix, so it is Hermitian.

« A’ is a matrix of nonnegative entries each of whose rows and columns sums to 1, which makes
it doubly stochastic. This is an analogue of "unitary" for classical probability.

« In fact, for any regular graph, meaning that all vertices have the same degree d, dividing the
adjacency matrix by d always gives a doubly-stochastic matrix.

« We can in fact make a unitary matrix A" by flipping the sign of the two 1s at lower right and

dividing by \/E rather than by 2. This is, however, more of a coincidence than a general feature.
The text shows that in the case of the regular prism graph (n = 6, d = 3), there is no sensible
way to make it into a unitary matrix.

+ The general way to encode graphs into quantum circuits via the CZ gate yield much bigger
underlying matrices---and some surprises. Here we go:



|x1) T
|x2) T
|x3) l

|x4) l

When put on four qubits, the first gate gives the matrix CZ®I®I, which we know how to build: replace
every entry of the CZ matrix by the 4 X 4 identity matrix, to get the 16 X 16 matrix
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At far left I've put the labels of the underlying coordinates by the sixteen basis strings of length 4. The
point is that the —1 entries go in all the places where the first two bits of the string are 1 as shown in
pink. This is because the first CZ gate is on the first two bits. Next, for the gate on qubits 1 and 3, we
follow the same rule but for the coordinates where the first and third bit are 1:



0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010 -1
1011 -1
1100 1

1101 1

1110 -1
1111 [ -1 ]

diag

1
S S G S {
|

Here is the product of all four gate matrices that we get. I've "properly" put the matrix for the first gate
on the right now, but actually this doesn't matter---they are all diagonal matrices so they commute with
each other. To multiply them, we can just multiply the entries in each of the sixteen rows. The blue 1s
show cases where an even number of —1 entries multiplied to give +1:

0000 [ 1] [ 1 [ 1] [ 1 ] [ 1]
0001 1 1 1 1 1
0010 1 1 1 1 1
0011 -1 1 1 1 -1
0100 1 1 1 1 1
0101 1 -1 1 1 -1
0110 1 1 1 1 1
0111 . -1 . -1 . 1 . 1 . 1
1000 diag 1 -diag 1 diag 1 -diag 1 = diag 1
1001 1 1 1 1 1
1010 1 1 -1 1 -1
1011 -1 1 -1 1 1
1100 1 1 1 -1 -1
1101 1 -1 1 -1 1
1110 1 1 -1 -1 1
1111 | -1 | | -1 | | -1 | | -1 | 1

A word to the wise: The matrix for the fourth gate, which comes leftmost just above, is the tensor
product (I®I) X CZ. The matrices for the middle two gates, however, are technically not tensor
products, because one identity comes "between the two arms" of the CZ gate. They are "morally”



tensor products, though. The assigned exercise 4.11 makes a different case of this point. The rule
about places with two particular 1s, however, applies in all cases. And the surviving —1 entries in the

product at right mark four of the strings that gave exactly two 1s, the four corresponding to the edge set
E =1{(1,2),(1,3),(2,4),(3,4)} of the graph.

If we apply our diagonal matrix to the all-1 unit vector, here [1,1, 1, 1]% = |++), then we get the

column vector of the diagonal entries at right (again, divided by 2 to normalize it). Does that column
vector faithfully preserve all information about the given graph? A question to ponder...

General Quantum Circuits and Computations

If there are 1 qubits, then the underlying matrices we getare N X N with N = 2". It is much harder to
handle 2"-sized stuff than n-sized stuff. Happily, we can always break the basic gates down to
constant size---3 at most with the Toffoli gate in practice---and there are theorems that guarantee
constant size gates working in general. One important case of using 7 single-qubit gates is the
Hadamard transform HOH® --- ® H (1 times), which can be abbreviated H®":

(11 1 1|1 1 1 1

1-11 -1{1 -1 1 -1

11 1 1 11 -1-1{1 1 -1 -1

2 11 -1 1 1 H®3=11—1—111—1—11
2[1 1 -1 1|’ o1l 1 1 1|-1-1-1-1

1 -1 -1 1 1-11 -1{-1 1 -1 1

11 -1 -1{-1 -1 1 1

1 -1 -1 1]-1 1 1 -1]

We always have H®"|0"Y = [+)®" = |+") = the all-1 vector of length N = 2" divided by
\/KT = V2" = 2"2  Often this is the first step of a quantum circuit, for example:

10>—| H
10> H
10> H l T
10> H

Putting the same Hadamard transform also at the end creates what is called a graph state circuit; we



will analyze them later.

We will call an N X N matrix that arises from a single small gate---or a tensor product of small gates---a
succinct matrix. Thus a quantum computation of length s is formally a composition of s succinct
matrices applied to some input vector. The text draws allusion to a classical computation on a binary
string x of length 71, such as x = 10100010, say. The quantum circuit starts with input the basis state

|x) = [10100010). We could actually start with |0%) but then prepare the state |x) by making the
first column of the circuit be the tensor product

XQIXRIQIRIRIXK®I ,

which has a NOT gate where x has a 1. This is why we often suppose ("without loss of generality") that
the circuit starts with the all-zero basis vector.

The Z and CZ gates are the heads of an important family of basic gates having to do with rotations of
phase, which is a curious but definitely physical property. When a complex number x + iy is rewritten

in polar form as reie, the angle O is the phase. The magnitude is r, so when r = 1 we have a unit
in/2 n

> means 90° phase. Then

complex number. Note that i itself is the same as '™~ since

in/4 2 — . In Cartesian coordinates, w = Here is

then w
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some more geometry:
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The vector u = [a, b]” is a funky unit vector. To see that it is a unit vector, note that

1+2)(1 1-2)(1-
lull2 = (wu) = u'u = aa+b'b = [ “‘)][ +a’]+( w][ ‘”).
2 2 2 2

In polar form, the complex conjugate of e is always e ¢ = ¢/?"9 so0 @ = ¢”™* = 7. In Cartesian



coordinates,

2 V2 ava 2 20 V2 ave
So
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Then
1+o) (1 1 ) . 1 2 1 2
(%)(¥)=g(\5+1+z)(\/§+1—z)=§[(\/§+1) +1| = 12+142v2+1) = 22
and

(57)(54) = 2v2-1-) (V2-1+0) = | (V2-1) +1] = Lo+ 1-2v241) = 222

These squared values add to 1 as promised, so u = [a, b]” is a unit vector. How do we get it? Here is
the start of an infinite family of gates:

_[1 0 _[10 _[10 R
Z_[o —1]’ S_[o i]’ T_|o a)l’ T“/s_[o efﬂ/S]'

The controlled versions to go with CZ are CS, CT, etc. They, too, are symmetric---indeed, all of these
gates are controlled phase shifts conditioned on the basis-state 1 of all of the (one or two) qubits
involved. (Here | must note global inconsistency and confusion in notation, especially about rotations,
which we will try to resolve when we cover the Bloch Sphere next week.)

Now we have all the background we need to read quantum circuits. Lecture will go on to illustrate
them, both out of section 4.5 and (the same examples) on QC web applets.



