
 
 
Interlude: Graphs and Graph States
 

Related to the  gate is the controlled version of the  gate.  Recall .  The CNOT Z Z =
1 0

0 -1

controlled version of any matrix  (in the standard basis) is the block matrix A
 

,CA =  

 0u 1u
0u I 0

1u 0 A
 
where the hierarchical quantum indexing scheme is also shown.  If the first qubit is 0 then the effect ios 
the identity, while if it is , then the effect on the remainder  is to apply .  So1 u A
 

.CZ =  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1

 
Although the control is nominally on the first qubit, with  the effect on base states is to multiply the CZ

global state by  if and only if both qubits are .  Hence it is really symmetric---the second qubit could -1 1

equally be said to be controlling the first.  The standard diagram for it is just two black
dots connected by themselves:
 

 
Since a general vector  becomes  after going through , it u , u , u , u[ 1 2 3 4]T u , u , u , - u[ 1 2 3 4]T CZ

follows, upon writing  and , that= a , aa [ 1 2]T = b , bb [ 1 2]T

 
 .CZ ⋅ ⊗ =  CZ ⋅ a b , a b , a b , a b  =  a b , a b , a b , - a ba b [ 1 1 1 2 2 1 2 2] [ 1 1 1 2 2 1 2 2]

 
Is this ever entangled, and if so, when?  Note that if  and  are both , then a b 1

.  To try to represent this as a CZ ⋅ ⊗  =  CZ  =  CZ ⋅ 0, 0, 0, 1  =  0, 0, 0, -1a b 11 [ ]T [ ]

tensor product , we need both  and  to be , so we are left with ⊗ = eg, eh, fg, fhe
f

g
h

[ ]T e g 0

.  This is easy to solve with  and , or even  since we can use complex fh = -1 f = 1 h = -1 f = h = i
numbers.  But now let  and  both be .  Then we get a b +

 

 

 

a

b



.CZ  =  CZ ⋅ 1, 1, 1, 1  =  1, 1, 1, -1++
1

2
[ ]T

1

2
[ ]T

 

For determining entanglement we can ignore the  factor.  So the equations become , , 1

2
eg = 1 eh = 1

, and .  The first three combine to give , so , but that fg = 1 fh = -1 g =   =  h
1

e
fg = fh = 1

contradicts the fourth equation .  Thus  is entangled.  It follows thatfh = -1 CZ ++

 
 

It is possible for a quantum gate to leave one separable state separable while making 
another separable state become entangled.

 
 
Now  gates are especially neat because they look like edges in a graph , specifically CZ G =  V, E( )

an undirected graph because the gates are symmetric.  Let's first see some examples of graphs.  The 
cycle graphs  have  vertices (also called nodes) and  edges connecting them in a ring, for .  Ck k k k ≥ 3

The four-cycle graph has the following picture and adjacency matrix:
 

 
Note: This differs from the text only in the labels 3 and 4.  This makes it maybe easier to see that not 
only is  not unitary, it isn't even invertible: rows 2 and 3, and rows 1 and 4, are identical.  But:A
 

•  is a real symmetric matrix, so it is Hermitian.A
•  is a matrix of nonnegative entries each of whose rows and columns sums to , which makes A' 1

it doubly stochastic.  This is an analogue of "unitary" for classical probability.
• In fact, for any regular graph, meaning that all vertices have the same degree , dividing the d

adjacency matrix by  always gives a doubly-stochastic matrix.d
• We can in fact make a unitary matrix  by flipping the sign of the two s at lower right and A'' 1

dividing by  rather than by .  This is, however, more of a coincidence than a general feature. 2 2

 The text shows that in the case of the regular prism graph ( , ), there is no sensible n = 6 d = 3

way to make it into a unitary matrix.
• The general way to encode graphs into quantum circuits via the  gate yield much bigger CZ

underlying matrices---and some surprises.  Here we go:
 

 

 

1 2

3
4

A =  

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

A' =  A1

2
A'' =  

1

2

0 1 1 0

1 0 0 1

1 0 0 -1

0 1 -1 0



 
When put on four qubits, the first gate gives the matrix , which we know how to build: replace CZ⊗ I⊗ I

every entry of the  matrix by the  identity matrix, to get the  matrixCZ 4 × 4 16 × 16

 

:     CZ⊗ I⊗ I = = diag     

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

 
At far left I've put the labels of the underlying coordinates by the sixteen basis strings of length 4.  The 
point is that the  entries go in all the places where the first two bits of the string are  as shown in -1 1

pink.  This is because the first  gate is on the first two bits.  Next, for the gate on qubits 1 and 3, we CZ
follow the same rule but for the coordinates where the first and third bit are :1

 

 

 

x1

x2

x3

x4



.:     diag     

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1

1

1

1

1

1

1

1

1

1

-1

-1

1

1

-1

-1

 
Here is the product of all four gate matrices that we get.  I've "properly" put the matrix for the first gate 
on the right now, but actually this doesn't matter---they are all diagonal matrices so they commute with 
each other.  To multiply them, we can just multiply the entries in each of the sixteen rows.  The blue s 1

show cases where an even number of  entries multiplied to give :-1 +1

 

:    diag     ⋅ diag        diag     ⋅ diag      =  diag     .

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1

1

1

-1

1

1

1

-1

1

1

1

-1

1

1

1

-1

1

1

1

1

1

-1

1

-1

1

1

1

1

1

-1

1

-1

1

1

1

1

1

1

1

1

1

1

-1

-1

1

1

-1

-1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

1

1

1

-1

1

-1

1

1

1

1

-1

1

-1

1

1

1

 
A word to the wise: The matrix for the fourth gate, which comes leftmost just above, is the tensor 
product .  The matrices for the middle two gates, however, are technically not tensor I⊗ I ×CZ( )

products, because one identity comes "between the two arms" of the  gate.  They are "morally" CZ

 

 



tensor products, though.  The assigned exercise 4.11 makes a different case of this point.  The rule 
about places with two particular s, however, applies in all cases.  And the surviving  entries in the 1 -1

product at right mark four of the strings that gave exactly two s, the four corresponding to the edge set 1

 of the graph.E = 1, 2 , 1, 3 , 2, 4 , 3, 4{( ) ( ) ( ) ( )}

 

If we apply our diagonal matrix to the all-  unit vector, here , then we get the 1 1, 1, 1, 1  =  [ ]
1

2
++

column vector of the diagonal entries at right (again, divided by  to normalize it).  Does that column 2

vector faithfully preserve all information about the given graph?  A question to ponder...
 
 
General Quantum Circuits and Computations
 
If there are  qubits, then the underlying matrices we get are  with .  It is much harder to n N ×  N N = 2n

handle -sized stuff than -sized stuff.  Happily, we can always break the basic gates down to 2n n
constant size---3 at most with the Toffoli gate in practice---and there are theorems that guarantee 
constant size gates working in general.  One important case of using  single-qubit gates is the n
Hadamard transform  (  times), which can be abbreviated :H⊗H⊗ ⋯ ⊗H n H⊗n

 

 ,             H  =  ⊗2
1

2

1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

H  =  ⊗3
1

2 2

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1

 

We always have the all-1 vector of length  divided by H  =   =   =  ⊗n 0n +
⊗n

+n N = 2n

.  Often this is the first step of a quantum circuit, for example: =   =  2N 2n n/2

 
 

 
Putting the same Hadamard transform also at the end creates what is called a graph state circuit; we 

 

 

0

0

0

0

H

H

H

H



will analyze them later.  
 
We will call an  matrix that arises from a single small gate---or a tensor product of small gates---a N × N
succinct matrix.  Thus a quantum computation of length  is formally a composition of  succinct s s
matrices applied to some input vector.  The text draws allusion to a classical computation on a binary 
string  of length , such as , say.  The quantum circuit starts with input the basis state x n x = 10100010

.  We could actually start with  but then prepare the state  by making the  =  x 10100010 08 x
first column of the circuit be the tensor product
 

,X⊗ I⊗X⊗ I⊗ I⊗ I⊗X⊗ I

 
which has a NOT gate where  has a .  This is why we often suppose ("without loss of generality") that x 1

the circuit starts with the all-zero basis vector.
 
The  and  gates are the heads of an important family of basic gates having to do with rotations of Z CZ

phase, which is a curious but definitely physical property.  When a complex number  is rewritten x +  iy
in polar form as , the angle  is the phase.  The magnitude is , so when  we have a unit rei𝜃 𝜃 r r = 1

complex number.  Note that  itself is the same as  since  means  phase.  Then i ei𝜋/2 𝜋

2
90∘

 and if we put  then .  In Cartesian coordinates, .  Here is i  =  e  =  - 12 i𝜋
𝜔 = ei𝜋/4

𝜔 = i2
𝜔 =  

1 + i

2

some more geometry:
 

The vector  is a funky unit vector.  To see that it is a unit vector, note that u = a, b[ ]T

 

.||u||  =  ⟨u,u⟩ =  u u =  a a + b b =  +2 * * * 1 +

2

𝜔⏨ 1 +𝜔

2

1 -

2

𝜔⏨ 1 -𝜔

2

 
In polar form, the complex conjugate of  is always , so .  In Cartesian ei𝜃 e = e-i𝜃 i 2𝜋-𝜃( ) = e = 𝜔𝜔⏨ i7𝜋/4 7

 

 



coordinates,
 

    and    =  1 + =
1 +𝜔

2

1

2

1+i

2

+1+i

2

2

2
 =  1 - =

1 -𝜔

2

1

2

1+i

2

-1-i

2

2

2

So

    and   . =  1 + =
1 +

2

𝜔⏨ 1

2

1-i

2

+1-i

2

2

2
 =  1 - =

1 -

2

𝜔⏨ 1

2

1-i

2

-1+i

2

2

2

 
Then 

= + 1 + i + 1 - i = + 1 + 1 = 2 + 1 + 2 + 1 =
1+

2

𝜔⏨ 1+𝜔

2

1

8
2 2

1

8
2

2 1

8
2

2+

4

2

and

.= - 1 - i - 1 + i = - 1 + 1 = 2 + 1 - 2 + 1 =
1-

2

𝜔⏨ 1-𝜔

2

1

8
2 2

1

8
2

2 1

8
2

2-

4

2

 
These squared values add to  as promised, so  is a unit vector.  How do we get it?  Here is 1 u = a, b[ ]T

the start of an infinite family of gates:
 

,   ,   ,   .Z =  
1 0

0 -1
S =  

1 0

0 i
T =  

1 0

0 𝜔
T  =  𝜋/8

1 0

0 ei𝜋/8

 
The controlled versions to go with  are , , etc.  They, too, are symmetric---indeed, all of these CZ CS CT

gates are controlled phase shifts conditioned on the basis-state  of all of the (one or two) qubits 1

involved.  (Here I must note global inconsistency and confusion in notation, especially about rotations, 
which we will try to resolve when we cover the Bloch Sphere next week.)
 
Now we have all the background we need to read quantum circuits.  Lecture will go on to illustrate 
them, both out of section 4.5 and (the same examples) on QC web applets.

 

 


