
CSE610 Week 5: Quantum Synthesis
 
Having covered quantum gates and more about the underlying physics, we now start the design of 
quantum circuits for larger-scale purposes.  
 
The main new piece is the Quantum Fourier Transform, which is just the Discrete Fourier Transform 
with exponential scaling:
 

For any , it takes  where .  With , the matrix together with its quantum n 𝜔  =  en
2𝜋i/N N =  2n n =  3

coordinates is:

 

 

 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 1 1

001 1 𝜔 i i𝜔 -1 -𝜔 -i -i𝜔
010 1 i -1 -i 1 i -1 -i
011 1 i𝜔 -i 𝜔 -1 -i𝜔 i -𝜔
100 1 -1 1 -1 1 -1 1 -1

101 1 -𝜔 i -i𝜔 -1 𝜔 -i i𝜔
110 1 -i -1 i 1 -i -1 i
111 1 -i𝜔 -i -𝜔 -1 i𝜔 i 𝜔

 0 1 2 3 4 5 6 7

0 1 1 1 1 1 1 1 1

1 1 𝜔 𝜔2 𝜔3 -1 𝜔5 𝜔6 𝜔7

2 1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

3 1 𝜔3 𝜔6 𝜔 -1 𝜔7 𝜔2 𝜔5

4 1 -1 1 -1 1 -1 1 -1

5 1 𝜔5 𝜔2 𝜔7 -1 𝜔 𝜔6 𝜔3

6 1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

7 1 𝜔7 𝜔6 𝜔5 -1 𝜔3 𝜔2 𝜔

=

QFT i, j  =  𝜔[ ] ij



 
Compare-contrast with the Hadamard Transform---here illustrated on 4 qubits:

 
We have argued that the Hadamard transform is feasible: it is just a column of  Hadamard gates, one n
on each qubit line.  There is, however, one consequence that can be questioned.  We observed that a 
network of Toffoli gates suffices to simulate any Boolean circuit  (of NAND gates etc.) that computes a C

function .  The Toffoli network  actually computes the reversible formf : 0, 1 0, 1{ }n → { }r Cf

 
 .F x , … , x , a , … , a  =  x , … , x , a ⊕ f x , … , a ⊕ f x( 1 n 1 r) ( 1 n 1 ( )1 r ( )r)

 
The matrix  of  is a giant permutation martrix in the  underlying coordinates.  Yet if the Uf Cf 2n+r

Boolean circuit  has  gates, then we reckon that  costs  to build and operate.  Now build the C s Cf O s( )

following circuit, which is illustrated with  and :n = 5 r = 4

 

 

H 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1

0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1

1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H u, v  =  -1[ ] ( )u•v
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What this circuit piece computes is the functional superposition of , defined asf
 

.     =    𝛷f
1

2n

∑
 

x∈ 0,1{ }n

x f x( )

 
The juxtaposition of two kets really is a tensor product.  This sum has exponentially many terms.  It 
seems to preserve an exponential amount of information: the entire truth table of the Boolean function 

 over all arguments .   However:f x( ) x ∈ 0, 1{ }n

 
•  is not an arbitrary or "random" function: it is computed by a small circuit of  NAND gates.f s

• We cannot actually extract an exponential amount of information from .  If we measure it 𝛷f

using the standard basis, we get our argument  back again plus  bits of some sampled x r
function value.  Measuring it in a different basis does not increase the information yield (this is 
part of Holevo's Theorem).  

 
Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the 
creation of .  We will "table" this question and consider the effort to be just  for the Hadamard 𝛷f O n( )

transform plus  for the circuit.O s( )

 
The Fourier transform can produce the same functional superposition, since it gives the same result on 
the all-  initialization.  However, its body---which comes into play on other arguments---involves a 0

different exponential element: the fineness of phase angles, starting with taking
.𝜔 =  e2𝜋i/2n

 
The two arguments that justify this are:

• The -qubit quantum Fourier transform (QFT) can be built up out of  smaller gates.n O n2

• Some of those gates are controlled fine-angle rotations (about the  axis of the Bloch Sphere), z

but they in turn can be built up from a small basic universal set of gates by what I'll call 
"stretching and halving".  

 
To illustrate the former first, here is how to create the  on four qubits:QFT

 

 



Here  with  not  as with the -gate.  So  has a phase angle T  =  𝜋/8
1 0

0 𝜔'
𝜔' =  ei𝜋/8 𝜔 =  ei𝜋/4 T 𝜔'

one-sixteenth of a circle.  For  the next bank uses , then , and soon the angles would n =  5 1 / 32 1 / 64

be physically impossible so the gates could never be engineered.  Those super-tiny angles are in the 
definition of the QFT itself.  
 
A prior example already shows what's meant by "stretching and halving":

• Basic gates can fabricate quantum states having finer phases.  This is already hinted by the 
diagram in the case of .  Try composing  and .  The Solovay-HTH HTHT H* HTHT HTHT H* *

Kitaev theorem enables approximating operators with exponentially fine angles by polynomially 
many gates of phases that are multiples of  (using CNOT to extend this to multiple-qubit 𝜔
operators).

• A supplementary point is that the Toffoli and Hadamard gates by themselves, which have phases 
only  and , can simulate the real parts and imaginary parts of quantum computations +1 -1

separately via binary code, in a way that allows re-creating all measurement probabilities.  (This 
is undertaken in exercises 7.8--7.14 with a preview in the solved exercise 3.8.) 

• The CNOT and Hadamard gates do not suffice for this, even when the so-called "phase gate" 

 is added.  The Pauli  gates and also  can be built from these, but S =  T  =  2 1 0

0 i
X,Y,Z CZ

quantum circuits of these gates can be simulated in deterministic ("classical") polynomial time.  
However,  suffices to build the Toffoli gate, per the diagram below (which is also a CS

presentation option).  So Hadamard +  is a universal set using only quarter phases.    CS

 

 



• The ultimate reason may be that the signature application of the QFT, which is Shor's algorithm 
showing that factoring belongs to , may only require coarsed-grained approximations to BQP

.QFTN

 
 
For these reasons,   is considered feasible even though  is exponential.  Not every QFTN N =  2n

 unitary matrix  is feasible---the Solovay-Kitaev theorem relies on  having a small exact N ×  N U U

formulation to begin with.  But if we fix a finite universal gate set (such as , , H+T+CNOT H+Tof

or  above) and use only matrices that are compositions and tensor products of these gates, H+CS

then we can use the simple gate-counting metric as the main complexity measure.
 
 
[The Tue. 9/28 lecture ended by demo'ing the above circuits on both Davy Wybiral's Quantum Circuit 
Simulator and the richer-but-majorly-busier simulator Quirk.  The latter illustrates Bloch spheres both for 
qubits and for single-qubit operators, and also shows mixed states as being local "handles" of 
entangled states.  We will pick the latter theme up in section 14.6 after first covering up through the 
applications in Chapter 8 with "Alice" and "Bob" in communication.] 
 
 
 
Note About Functional Superpositions (cf. sections 6.2 and 6.4)
 
We've seen (on homework) that when  is the Boolean identity function on  bit, then  consists f n = 1 Cf

of just one  gate.  This generalizes for  using one  gate per argument.  ThusCNOT n > 1 CNOT

computes the functional superposition
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∑
 

x∈ 0,1{ }5

x x

 
This is not the same as , because that is the equal superposition over all basis ⊗+++++ +++++

states for -bit binary strings, including all the cases of  where the binary strings  and  of length 10 xy x y

 are different.  An analogy is that for any set  of two or more elements, the Cartesian product of  5 A A

with itself includes ordered pairs  with  but , whereas the functional superposition is x, y( ) x, y ∈ A x ≠ y

like the diagonal of the Cartesian product, namely .  The functional superposition is x, x : x ∈ A{( ) }

entangled, just as we first sdaw in the case .n = 1

 
If we replace the five  gates by a subcircuit that prepares a general 5-qubit stateH

 
, =  a + a + ⋯ + a + a𝜙 0 00000 1 00001 30 11110 31 11111

 
then the five  gates produceCNOT

 
.D  =  a + a + ⋯ + a + a𝜙 0 0000000000 1 0000100001 30 1111011110 31 1111111111

 
This is not the same as , whose terms have coefficients  for all  and .  IMHO the ⊗𝜙 𝜙 a ai j i j

notation  or  can be unclear about what is meant, though I've freely used  etc. as 𝜙 𝜙 𝜙𝜙 ++

above.  When  is a basis element in the basis used for notation, then there is no difference: both x

 and  have the single term  with coefficient .  ⊗x x D x xx 1 = 12

 
 
The Copy-Uncompute Trick (section 6.3)
 
The Deferred Measurement Principle (section 6.6)
 
Feasible Diagonal Matrices (section 5.4)
 

We can continue the progression , , by Z =
1 0

0 -1
CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1

 

 



, ,CCZ =

1        

 1       

  1      

   1     

    1    

     1   

      1  

       -1

CCCZ = diag 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1([ ])

 
and so forth.  These are examples of a different kind of conversion of a Boolean function  besides the f

reversible form called  or  above.  This is the matrix  defined for all indices  byF Cf Gf u, v
 

.G u, v  =  f[ ]

0 if u ≠ v

-1 if u = v ∧ f u = 1( )

1 if u = v ∧ f u = 0( )

 
The above are for the -ary AND function.  The  stands for "Grover Oracle", though here I G  AND n G

would rather emphasize that it is a concretely feasible operation.
 
Theorem: If  is computable by a Boolean circuit with  gates, thgen  can be computed by a f s Gf

quantum circuit of  gates.O s( )

 
When  is polynomial in , this makes a big contrast to  being a -sized diagonal matrix.   s =  s n( ) n Gf 2n

 
 
The Phase Flip Trick (section 6.5)
 
 
 
Reckoning and Visualizing Circuits and Measurements (chapter 7)
 
There are basically three ways to "reckon" a quantum circuit computation:
 

1. Multiply the  matrices together---using sparse-matrix techniques as far as possible.  If Q × Q

 and you try this on a problem in the difference then the sparse-matrix techniques BQP ≠  P

must blow up at some (early) point.  The downside is that the exponential blowup is paid early; 
the upside is that once you pay it, the matrix multiplications don't get any worse, no matter how 
more complex the gates become.  This is often called a "Schrödinger-style" simulation.

2. Any product of -many  matrices can be written as a single big sum of -fold products.  s Q × Q s

For instance, if  are four such matrices and  is a length-  vector, thenA, B, C, D u Q

.ABCDu i  =  A i, j ⋅B j, k ⋅C k, l ⋅D l, m ⋅ u m[ ] ∑
Q

j,k,l,m=1

[ ] [ ] [ ] [ ] [ ]

 

 



Every (nonzero) product of this form can be called a (legal) path through the system.  [As hinted 
before, in a quantum circuit,  will be at left---on an input , it will be the basis vector u x

 under the convention that s are used to initialize the output and ancilla lines-e  =  x0r+m x0r+m 0

--and  will be the first matrix from gate(s) in the circuit as you read left-to-right.  Thus the D

output will come out of , which is why it is best to visualize the path as coming in from the top A

of the column vector , going out at some row  (where  is nonzero---for a standard basis u m um

vector, there is only one such ), then coming in at column  of , choosing some row  to exit m m D l

(where the entry  is nonzero), then coming in at column  of , and so on until exiting at D l, m[ ] l C

the designated row  of .  This is the discrete form of Richard Feynman's sum-over-paths i A
formalism which he originally used to represent integrals over quantum fields (often with respect 
to infinite-dimensional Hilbert spaces).  The upside is that each individual path has size  O s( )

which is linear not exponential in the circuit size.  The downside is that the number of nonzero 
terms in the sum can be far worse than  and doubles each time a Hadamard gate (or other Q
nondeterministic gate) is added to the circuit.  

3. Find a way to formulate the matrix product so that the answer comes out of symbolic linear 
algebra---if possible!

 
For the textbook, I devised a way to combine the downsides of 1 and 2 by making an exponential-sized 
"maze diagram" up-front but evaluating it Feynman-style.  Well, the book only uses it for  1 ≤  Q ≤  3

and I found that the brilliant Dorit Aharonov had the same idea.  All the basic gate matrices have the 

property that all nonzero entries have the same magnitude---and when normalizing factors like  are 1

2

collected and set aside, the Hadamard, CNOT, Toffoli, and Pauli gates (ignoring the global  factor in ) i Y

give just entries  or , which become the only possible values of any path.  That makes it easier to +1 -1

sum the results of paths in a way that highlights the properties of amplification and interference in the 
"wave" view of what's going on.  The index values become "locations" in the wavefront m, l, k, j, i, …

as it flows for time , and since it is discrete, the text pictures packs of...well...spectral lab mice running s
through the maze.  
 
One nice thing is that you can read the mazes left-to-right, same as the circuits.  Here is the 

 entangling circuit example:H +  CNOT

 

 



 
No interference or amplification is involved here---the point is that if you enter at , then  and 00 00

 are the only places you can come out---and they have equal weight.  To see interference, you can 11

string the "maze gadgets" for two Hadamard gates together:
 

 
In linear-algebra terms, all that happened at lower right was  giving .  But the wave 1 ⋅ 1 +  - 1 ⋅ 1 0

interference being described that way is a real physical phenomenon.  Even more, according to 
Deutsch the two serial Hadamard gates branch into 4 universes, each with its own "Phil the mouse" 
(which can be a photon after going through a beam-splitter).  One of those universes has "Anti-Phil", 
who attacks a "Phil" that tries to occupy the same location (coming from a different universe) and they 
fight to mutual annihilation.
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