
CSE610 Week 6: Visualizing Small Quantum Systems
 
Can we build any interesting things with just a few qubits?  Yes, in fact.  The first example will be new 
but relatively simple.
 
Definition: A graph state circuit on  qubits consists of an -qubit Hadamard transform (i.e., ), n n H

⊗n

then some number of  and  gates, then a final .Z CZ H⊗n

 
Each qubit is a node.  A -gate connecting qubits  and  gives an undirected edge between nodes  CZ i j i

and .  A -gate on line  denotes a self-loop at node .  The simplest nonempty graph has just one j Z i i
node with a self-loop:
 

 
We have seen the equation . How is this reflected when we visualize the quantum HZH = X

properties?  There is onlyone  change from the "maze" for two -gates canceling, which was:H

 

The change is to insert a stage that again has a  on the  basis value but no "crossover":-1 1

 

 
This time, when "Phil" starts running from  at left, the "mice" cancel at  and amplify at 0 z = 0

.  And on input  they output the basis state .  The result is Boolean NOT, i.e., .z = 1 x = 1 0 X

 
[Footnote: A basic outcome  for the circuit  on input  has amplitude , not  as z C x z UC x x UC z

I've once been guilty of writing.  Perhaps the diagrams should write the bra-form,  and  and so 0 1
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on, for  at right to emphasize this.  But we've identified the ket-form with the notion of "outcome"; this z
is the form that would be given as input to a further piece of the circuit.  This dilemma is another reason 
why Lipton and I first tried for a "handedness-free" approach.]
 
For graph state circuits of  nodes we need  qubits.  The Hadamard transform of two qubits is 2 2

diagrammed as at left and right.  It does not matter what order the two  gates go in.H

 

 
Note that the mouse running from  encounters no phase change, nor mice ending at  00 00

regardless of origin.  This simply expresses that the Hadamard transform (and the QFT too) have every 

entry  (divided by the normalizing constant ) in the row and column for .  We will focus +1 R = 2n 00

on the amplitude of getting  as output given  as input.  If  is the graph,  the graph-state 00 00 G CG

circuit, and  the unitary operator it computes, then the amplitude we want is .  UG 00 UG 00

 
The simplest two-node  has a single edge connecting the two nodes.  This introduces a single  G CZ

gate between the qubits standing for the nodes.
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If we take the two Hadamard gates away from line 1, then we have , which is H 2 CZ 1 2 H 2

equivalent to .  But with them, we get equal superpositions once again.  Most in particular, the CNOT

amplitude of  is nonzero.  [The lecture also noted how  is a fixed point of 00 UG 00 1, 1, 1,-1
1

2
[ ]T

 and found some other fixed points of parts of the circuit, including one that was equal up to H
⊗2

multiplication by the unit scalar .]-1

 
Now let's try a graph that adds a loop at each node.  We can call it the "Q-Tip" graph:

 
The  phase shifts for the  gates go on the basis states that have a  on line 1 or 2, respectively.  -1 Z 1

Now the amplitude value  is negative.  Its sign does not affect the probability and the state 00 UG 00

still gives an equal superposition.
 
It does not matter whether we put the  gates "before" or "after" the .  The diagonal matrices all Z CZ

commute, and this is clear from how the paths go straight across without branching.  We could simply 
make the whole graph into one diagonal gate with phase shifts that multiply the  factors along each -1

row.  A related thing to note is that if we repeat an edge or loop, then the two cancel completely.  It's as 
if we have a graph with edges defined by even-odd parity rather than number.
 
Now let's try a three-node graph, the triangle:
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For computing the amplitude  it is not necessary to follow the "mice" through the 000 UG 000

Hadamard parts of the "maze".  The mice entering the graph part from  are all positive, and x = 000

the mice going to  will not change color once they leave the graph.  So we need only track z = 000

the middle portion and count how many mice are  and how many are .  For the triangle graph, the + -

answer is: four of each.  They cancel.  So .   =  0000 UG 000

 
This leads us to more insight and a strategy for determining this amplitude for a general -node graph n

:  G = V,E( )

 
• Every basis state  with  corresponds to a 2-coloring  of the vertices.  Say a x x ∈ 0, 1{ }n 𝜒x

node  is black (B) if , white (W) if .  (The Greek letter  (chi) looks like an  and u x = 1u x = 0u 𝜒 X
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indeed  is its capital form, but the Greek letter that sounds like English X is  (xi) with capital . 𝛸 𝜉 𝛯

 The  gives the ch in chromatic.  Well, we can say that the binary string  "is" the coloring .)𝜒 x 𝜒

• For any edge , the edge contributes a -1 in its  gate if both  and  are colored B.  u, v ∈ E( ) CZ u v
Call it a B-B edge.

• Therefore, a coloring gives a  net contribution if it gives  an odd number of B-B edges.-1 G

• The amplitude value  is positive if fewer than  (i.e., half) the colorings create 0n UG 0n 2n-1

an odd number of B-B edges, zero if exactly half do, negative if more.
 
Whether one amplitude is positive or negative does not matter so much in quantum up to equivalence 
under scalar multiplication.  (My lecture demo'ed some examples.)  But patterns of signs between 
different amplitudes  of possible outcomes  may have further significance.  az z z
 
Whether the amplitude is zero, however, is absolute.  I call a graph  "net-zero" if .  G = 00n UG 0n

Above we first observed that the single-node loop graph is net-zero.  The smallest simple undirected 
graph (meaning no loops or multiple edges) that is net-zero is the triangle.  Here are all such graphs up 
to five vertices:

I do not see any simple way to tell "visually" whether a graph is net-zero.  My recent PhD graduate 

Chaowen Guan and I improved the known running time to decide this algorithmically from to O n3

whatever the time to multiply two  matrices is (currently )).  The algorithm works by n× n <  O n( 2.37286

converting the graph-state circuit into a quadratic equation of a kind that converts into a linear equation 
in  variables, whose solutions can be counted in yea-much time.  But a simple, more-direct O n( )

criterion for a graph to be net-zero could give a practically much better algorithm.  Guan and I wrote 
about this on the GLL blog at
 

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/
 
Some generalizations of graph-state circuits can be handled with equal efficiency.  We can simulate 

 gates since is equivalent to .  The extra  gates take things outside CNOT CNOT i j H j CZ i j H j H

the realm of graph-state circuits as strictly defined, but keeps them within the class of so-called 
stabilizer circuits, or equivalently, Clifford circuits, to which the same  runtime <  O n2.37286

applies (for getting any one amplitude, that is).  The gates allowed in these circuits are , , , H CNOT S

, , , , but notably not , , or .  But there are other tweaks that seem to be easy to bring X Y Z CZ Tof T CS

within our framework, yet yield hard problems.  Consider:
 

 

 

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/


 
The only change was in the middle column, removing the  from the row for .  The middle -1 011

column now "fires" only when all 3 bits are , i.e., for the component of  in any state.  This is the 1 111

action of the double-controlled -gate,  (which is really a triple control of a  phase shift).  It is Z CCZ 180∘

easy to diagram in a quantum circuit:

In graph-theoretic terms, this has replaced the edge  by the hyper-edge , thus creating a 2, 3( ) 1, 2, 3( )

hypergraph.  The effect of changing only the color of the mouse in row 4 (for ) may seem small, 011

but it has a wild effect on the state vector.  Now  has  positive paths from  instead z = 000 5 x = 000

of 4, so its amplitude is .  Six other components have amplitude , and they collectively have  =
5-3
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one path of eight made a  difference to the probability, more than one might expect.  The  gate 5

16
CCZ

could likewise be in any order---the gates commute so there is no element of time sequencing until the 
final bank of  gates.  The middle part is "instantaneous."H

 
This little illustration of wildness sits over a more general point.  The equation resulting from having the 

 gate changes from quadratic to cubic.  The trick to make it linear no longer applies.  Counting CCZ

solutions to this kind of cubic equation is -hard.  In fact, sandwiching the  gate between two  NP CCZ H

gates (on any one qubit line) gives the Toffoli gate (with target on that line).  So  goes outside the CCZ

Clifford ambit and gives a universal gate set.  
 
 
Deutsch's Algorithm
 
David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing 
while he and I were graduate students at Oxford in the mid-1980s.  At first, he claimed quantum 
computers could solve the Halting Problem in finite time.  Fellows of Oxford's Mathematical Institute 
refuted the claim.  But it was not crazy: a year ago it was proved that a binary quantum system of 
"interactive provers" can (kind-of-)solve the Halting Problem in finite time.  (My review of the paper is at 
https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/)  Per my memory of 
observing some meetings about it, the gap in Deutsch's argument had to do with properties of 
probability measures based on infinite binary sequences. 
 
So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that 
quantum computers can do and classical ones cannot.  (Well, unless the playing field is leveled for 
them...but before we argue about it, let's see the task.)  The task is a learning problem, a kind of 
interaction we haven't covered until this last day.  Instead of "input , compute , a learning x y =  f x "( )

problem is to determine facts about an initially-unknown entity  that you can query.  f
 

1. Oracle Turing machines give a classic way to define this kind of problem.  For oracle functions 
 or languages  drawn from a limited class---such as subclasses of the regular languages---f A

can we design an OTM  that on input  (for large enough ) can distinguish what  is in time M 0n n A

(say) polynomial in ?  The computation  can learn about  by making queries  on n M 0A n A y

selected strings  and observing the answers .  y A y( )

2. One can also define oracle circuits that have special oracle gates with some number  of m

input wires and enough output wires to give the answer  on any .f y( ) y ∈  0, 1{ }m

3. An ordinary electrical test kit behaves that way.  It is a circuit with a place(s) for you to insert one 
or more (possibly-defective) electrical components .  The test results should diagnose A

electrical facts about .A
4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms 

work this way.  They involve an oracle function  given in reversible form f :  0, 1  0, 1{ }n → { }r

as the function defined by:F : 0, 1  0, 1  { }n+r → { }n+r

 

 

 



. F x, z  =  x, f x  ⊕  z( ) ( ( ) )

 
Usually  is  and the comma is just concatenation (i.e., tensor product) so the output is just z 0r

.  In the simplest case ,  is a two-(qu)bit function.  Some examples:xf x( ) n =  r =  1 F
 

• If  is the identity function, , then .f f x  =  x( ) F x, z  = x, x⊕ z  =  CNOT x, z  ( ) ( ) ( )

• If , then : , , , .f x = ¬x( ) F x, z = x, x ↔ z( ) ( ) F 00 = 01( ) F 01 = 00( ) F 10 = 10( ) F 11 = 11( )

• If  is always false, i.e., , then  is the identity function.f f x  =  0( ) F

• If , then , so , , , f x = 1( ) F x, z = x, ¬z( ) ( ) F 00 = 01( ) F 01 = 00( ) F 10 = 11( ) F 11 = 10.( )

 
These are all deterministic as functions of two-qubit basis states, so they permute the quantum 
coordinates , , , and .  Recall that  gives the permutation that swaps 1 = 00 2 = 01 3 = 10 4 = 11 CNOT

the coordinates 3 and 4, that is,  in swap notation.  In full, we have:CNOT =  3 4( )

 
,    ,    , .F  =  3 4id ( ) F  =  1 2¬ ( ) F  =  0 ()    F  =  1 2 3 41 ( )( )

 
The functions  and  are constant.  The identity and  functions have one true and f x  =  0( ) f x  =  1( ) ¬

one false value each, so they balance values of  and .  The question posed by Deutsch is:0 1

 
How many queries are needed to tell whether  is constant from whether  is balanced?f f

 
If we just think of , suppose we try the query  and ask for .  If we get the answer "f y =  0 f y( )

 then it  could be constant-false, but  could also be the balanced identity function.  The f 0  =  0"( ) f f

answer  would leave both constant-true and negation as possibilities.  Likewise if we try f 0  =  1( )

.  The first point is that this impossibility of hitting things with one query carries forward to the y =  1

way we have to modify the problem for quantum:
 

How many queries are needed to tell  apart from ?F  or F( id ¬) F  or F( 0 1)

 
It seems like we have more of a chance because now we can query two things: , , , or .  Or in 00 01 10 11

the permutation view, we can query , , , or .  The problem is that the range of answers we y =  1 2 3 4

can get is too limited for this to help.   and  can only be  ro ;  and  can only be  or F 1( ) F 2( ) 1 2 F 3( ) F 4( ) 3

.  So suppose you query  and get the answer .  Then  could be  or  could be .  The 4 y =  3 4 F Fid F F1

basic problem for a classical algorithm is that every quadrant of the following diagram has both a 
straight and a cross:
 

 

 



 
A quantum circuit, however, can make one query to an oracle gate for any of these four functions, and 
can distinguish a member of the first pair from a member of the second pair by the answer to one qubit 
after a measurement.  The input is not  but instead ; that is, the ancilla is initialized to , not to 00 01 1

.  Here is the wavefront ("maze") diagram of how it works:0

 
There is, IMHO, an "unfair" aspect of the comparison.  The classical algorithm is being allowed to 
evaluate the oracle only at basis vectors.  The quantum algorithm gets to evaluate it at a linear 
combination---indeed, it's the state
 

 =   -   +   -  + -
1

2
00 01 10 11

 
from the Fri. 12/4 lecture.  If we do the kind of linear extension of Boolean logic that was covered as the 
"Binary Linear Equations" presentation option, then we can solve the problem in one shot classically by 
evaluating at the point  and seeing where the  signs end up in the resulting vector.  FYI: 1,-1, 1,-1( ) -
https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/  
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Example: Superdense Coding
 
It is easy to rig cases  where you can distinguish them exactly by asking one query and F , F , F , F0 1 2 3

measuring both qubits.  Just define , for instance.  "Superdense coding" is a case where the F 00  =  ii( )

rigging has a bit of surprise because it appears to convey 2 bits of information with just 1 qubit of 
communication.  This is impossible by Holevo's Theorem that  qubits can yield only  bits of classical n n

information.  (Another instance of this that you can input  bits of information by choosing the  ∼ n
1

2
2 CZ

gates for edges of an undirected -vertex graph  in a graph-state circuit  on  qubits, one for each n G CG n

vertex, but you can only get  bits of information out by measuring.  Hence graph-state encoding is n
majorly lossy.)  The rub is that the rigging involves the communicating parties "Alice" and "Bob" already 
having exchanged 1 bit of information in order to set them up with an entangled qubit pair.  
 
We will regard it as a nice case of the learning problem because it uses the four Pauli matrices.  We 
want to identify one of the following four possibilities exactly by the results of two qubits.

 
This time the input is .  To work it out via wavefronts:00
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Example: Quantum Teleportation
 
 

 

 



 
Deutsch-Jozsa Extension
 
Getting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishing 
constant functions  from balanced ones, then you can make the classical f :  0, 1   0, 1{ }n → { }

algorithms require  queries, while the quantum ones can still do it on one query to a completely 2 + 1n-1

separable superposed state.  This is a conditional problem, called a promise problem, in that it only 
applies when  is in one of those two cases.  If  is neither balanced nor constant, then "all bets are f f

off"---any answer is fine, even .   ¯ \ _ ツ _ / ¯ ( )

 

 

 



The maze diagrams would get exponentially big, but we can track the computations via linear algebra.  
It is like Deutsch's setup except with  in place of the first , input  in place of , and H

⊗n
H 0 1n 01

targets (ignoring the  normalizers):2

 
• constant  (instead of , so that  is certainly measured.↦ +0n 0 1 +00 01 0n

• balanced  (instead of , such that  is certainly not measured.↦ ? +10 11 0n

 
The key observation is that for any , any argument , and , the amplitude in the f x ∈  0, 1{ }n b ∈  0, 1{ }

component  of the final quantum state  isxb 𝜙
 

.-1 -1
1

2n+1

∑
 

t ∈ 0,1{ }n

( )x•t( )f t ⊕b( )

 
Here  means taking the dot-products  (which is the same as ) and adding them up x • t x ⋅ ti i x ∧ ti i

modulo  (which is the same as XOR-ing them).  Well, when  this is always just zero, so the 2 x =  0n

first term is  and just drops out, leaving -1( )0

 

.𝜙 0 b  =  -1 -1n 1

2n+1

( )b ∑
 

t ∈ 0,1{ }n

( )f t( )

 
Note that the  term is independent of the sum over , so it comes out of the sum---and this is why -1( )b t
we get two equal possibilities in the original Deutsch's algorithm as well.  Ths final point is that:
 

• When  is constant, these terms are all the same, so they amplify---giving  for the constant-f
1

2

false function and  for constant-true.  Both of these amplitudes square to  and so together -1

2

1

2

soak up all the output probability, so that  is measured with certainty.0n

• When  is balanced, the big sum has an equal number of  and  terms, so they all interferef +1 -1

 and cancel.  Hence  will certainly not be measured.0n

 
Added: A randomized classical algorithm can efficiently tell with high probability whether  is constant f

by querying some random strings.  If it ever gets different answers  then definitely  is not f y  ≠  f y'( ) ( ) f
constant.  (So, under the condition of the "promised problem," it must be balanced.)  If it always gets 
the same answer, then since any balanced function gives 50-50 probability on random strings, it can 
quickly figure that  is constant.  But it is still the case that a deterministic algorithm needs f
exponentially many queries and hence exponential time.
 
 

 

 


