
CSE610 Week 6: Visualizing Small Quantum Systems

Can we build any interesting things with just a few qubits? Yes, in fact. The first example will be new
but relatively simple.

Definition: A graph state circuit on qubits consists of an -qubit Hadamard transform (i.e.,), n n H

⊗n

then some number of and gates, then a final .Z CZ H⊗n

Each qubit is a node. A -gate connecting qubits and gives an undirected edge between nodes CZ i j i

and . A -gate on line denotes a self-loop at node . The simplest nonempty graph has just one j Z i i
node with a self-loop:

We have seen the equation . How is this reflected when we visualize the quantum HZH = X

properties? There is onlyone change from the "maze" for two -gates canceling, which was:H

The change is to insert a stage that again has a on the basis value but no "crossover":-1 1

This time, when "Phil" starts running from at left, the "mice" cancel at and amplify at 0 z = 0

. And on input they output the basis state . The result is Boolean NOT, i.e., .z = 1 x = 1 0 X

[Footnote: A basic outcome for the circuit on input has amplitude , not as z C x z UC x x UC z

I've once been guilty of writing. Perhaps the diagrams should write the bra-form, and and so 0 1

H HZx1 z1

0

1

0

1

input x = 0

-1 -1

input x = 1

1 1

1 -1

1 1

1 -1
=

2 0

0 2

0 1

=

0

1

0

1

input x = 0

-1 -1

input x = 1

-1

=

on, for at right to emphasize this. But we've identified the ket-form with the notion of "outcome"; this z
is the form that would be given as input to a further piece of the circuit. This dilemma is another reason
why Lipton and I first tried for a "handedness-free" approach.]

For graph state circuits of nodes we need qubits. The Hadamard transform of two qubits is 2 2

diagrammed as at left and right. It does not matter what order the two gates go in.H

Note that the mouse running from encounters no phase change, nor mice ending at 00 00

regardless of origin. This simply expresses that the Hadamard transform (and the QFT too) have every

entry (divided by the normalizing constant) in the row and column for . We will focus +1 R = 2n 00

on the amplitude of getting as output given as input. If is the graph, the graph-state 00 00 G CG

circuit, and the unitary operator it computes, then the amplitude we want is . UG 00 UG 00

The simplest two-node has a single edge connecting the two nodes. This introduces a single G CZ

gate between the qubits standing for the nodes.

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1

-1

H Hx1 z1

H Hx2 z2

If we take the two Hadamard gates away from line 1, then we have , which is H 2 CZ 1 2 H 2

equivalent to . But with them, we get equal superpositions once again. Most in particular, the CNOT

amplitude of is nonzero. [The lecture also noted how is a fixed point of 00 UG 00 1, 1, 1,-1
1

2
[]T

 and found some other fixed points of parts of the circuit, including one that was equal up to H
⊗2

multiplication by the unit scalar .]-1

Now let's try a graph that adds a loop at each node. We can call it the "Q-Tip" graph:

The phase shifts for the gates go on the basis states that have a on line 1 or 2, respectively. -1 Z 1

Now the amplitude value is negative. Its sign does not affect the probability and the state 00 UG 00

still gives an equal superposition.

It does not matter whether we put the gates "before" or "after" the . The diagonal matrices all Z CZ

commute, and this is clear from how the paths go straight across without branching. We could simply
make the whole graph into one diagonal gate with phase shifts that multiply the factors along each -1

row. A related thing to note is that if we repeat an edge or loop, then the two cancel completely. It's as
if we have a graph with edges defined by even-odd parity rather than number.

Now let's try a three-node graph, the triangle:

00

01

11

10

00

01

11

10
-1

-1 -1

-1

-1

-1-1

-1

-1

H Hx1 z1

H Hx2 z2

Z

Z

-1 -1

-1

-1

For computing the amplitude it is not necessary to follow the "mice" through the 000 UG 000

Hadamard parts of the "maze". The mice entering the graph part from are all positive, and x = 000

the mice going to will not change color once they leave the graph. So we need only track z = 000

the middle portion and count how many mice are and how many are . For the triangle graph, the + -

answer is: four of each. They cancel. So . = 0000 UG 000

This leads us to more insight and a strategy for determining this amplitude for a general -node graph n

: G = V,E()

• Every basis state with corresponds to a 2-coloring of the vertices. Say a x x ∈ 0, 1{ }n 𝜒x

node is black (B) if , white (W) if . (The Greek letter (chi) looks like an and u x = 1u x = 0u 𝜒 X

000

001

011

010

000

001

011

010

-1

-1

-1

-1-1

-1

H Hx1 z1

H Hx2 z2

-1

H Hx3 z3

100

101

111

110

100

101

111

110-1

-1 -1

-1

-1

-1-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

indeed is its capital form, but the Greek letter that sounds like English X is (xi) with capital . 𝛸 𝜉 𝛯

 The gives the ch in chromatic. Well, we can say that the binary string "is" the coloring .)𝜒 x 𝜒

• For any edge , the edge contributes a -1 in its gate if both and are colored B. u, v ∈ E() CZ u v
Call it a B-B edge.

• Therefore, a coloring gives a net contribution if it gives an odd number of B-B edges.-1 G

• The amplitude value is positive if fewer than (i.e., half) the colorings create 0n UG 0n 2n-1

an odd number of B-B edges, zero if exactly half do, negative if more.

Whether one amplitude is positive or negative does not matter so much in quantum up to equivalence
under scalar multiplication. (My lecture demo'ed some examples.) But patterns of signs between
different amplitudes of possible outcomes may have further significance. az z z

Whether the amplitude is zero, however, is absolute. I call a graph "net-zero" if . G = 00n UG 0n

Above we first observed that the single-node loop graph is net-zero. The smallest simple undirected
graph (meaning no loops or multiple edges) that is net-zero is the triangle. Here are all such graphs up
to five vertices:

I do not see any simple way to tell "visually" whether a graph is net-zero. My recent PhD graduate

Chaowen Guan and I improved the known running time to decide this algorithmically from to O n3

whatever the time to multiply two matrices is (currently)). The algorithm works by n× n < O n(2.37286

converting the graph-state circuit into a quadratic equation of a kind that converts into a linear equation
in variables, whose solutions can be counted in yea-much time. But a simple, more-direct O n()

criterion for a graph to be net-zero could give a practically much better algorithm. Guan and I wrote
about this on the GLL blog at

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/

Some generalizations of graph-state circuits can be handled with equal efficiency. We can simulate

 gates since is equivalent to . The extra gates take things outside CNOT CNOT i j H j CZ i j H j H

the realm of graph-state circuits as strictly defined, but keeps them within the class of so-called
stabilizer circuits, or equivalently, Clifford circuits, to which the same runtime < O n2.37286

applies (for getting any one amplitude, that is). The gates allowed in these circuits are , , , H CNOT S

, , , , but notably not , , or . But there are other tweaks that seem to be easy to bring X Y Z CZ Tof T CS

within our framework, yet yield hard problems. Consider:

https://rjlipton.wpcomstaging.com/2019/06/10/net-zero-graphs/

The only change was in the middle column, removing the from the row for . The middle -1 011

column now "fires" only when all 3 bits are , i.e., for the component of in any state. This is the 1 111

action of the double-controlled -gate, (which is really a triple control of a phase shift). It is Z CCZ 180∘

easy to diagram in a quantum circuit:

In graph-theoretic terms, this has replaced the edge by the hyper-edge , thus creating a 2, 3() 1, 2, 3()

hypergraph. The effect of changing only the color of the mouse in row 4 (for) may seem small, 011

but it has a wild effect on the state vector. Now has positive paths from instead z = 000 5 x = 000

of 4, so its amplitude is . Six other components have amplitude , and they collectively have =
5-3

8

1

4

1

4

7

16

of the probability. The other has positive paths to negative, and so amplitude which 7 1 =
7-1

8

3

4

squares to . Note that the previous amplitude was which squares to just , so flipping just 9

16
=

6-2

8

1

2

1

4

000

001

011

010

000

001

011

010

-1

-1

-1

-1-1

-1

100

101

111

110

100

101

111

110-1

-1 -1

-1

-1

-1-1

-1

-1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

H Hx1 z1

H Hx2 z2

H Hx3 z3

one path of eight made a difference to the probability, more than one might expect. The gate 5

16
CCZ

could likewise be in any order---the gates commute so there is no element of time sequencing until the
final bank of gates. The middle part is "instantaneous."H

This little illustration of wildness sits over a more general point. The equation resulting from having the

 gate changes from quadratic to cubic. The trick to make it linear no longer applies. Counting CCZ

solutions to this kind of cubic equation is -hard. In fact, sandwiching the gate between two NP CCZ H

gates (on any one qubit line) gives the Toffoli gate (with target on that line). So goes outside the CCZ

Clifford ambit and gives a universal gate set.

Deutsch's Algorithm

David Deutsch, drawing on two papers by Feynman and other sources, introduced quantum computing
while he and I were graduate students at Oxford in the mid-1980s. At first, he claimed quantum
computers could solve the Halting Problem in finite time. Fellows of Oxford's Mathematical Institute
refuted the claim. But it was not crazy: a year ago it was proved that a binary quantum system of
"interactive provers" can (kind-of-)solve the Halting Problem in finite time. (My review of the paper is at
https://rjlipton.wordpress.com/2020/01/15/halting-is-poly-time-quantum-provable/) Per my memory of
observing some meetings about it, the gap in Deutsch's argument had to do with properties of
probability measures based on infinite binary sequences.

So Deutsch fell back on something less ambitious: demonstrating that there was a "very finite" task that
quantum computers can do and classical ones cannot. (Well, unless the playing field is leveled for
them...but before we argue about it, let's see the task.) The task is a learning problem, a kind of
interaction we haven't covered until this last day. Instead of "input , compute , a learning x y = f x "()

problem is to determine facts about an initially-unknown entity that you can query. f

1. Oracle Turing machines give a classic way to define this kind of problem. For oracle functions
 or languages drawn from a limited class---such as subclasses of the regular languages---f A

can we design an OTM that on input (for large enough) can distinguish what is in time M 0n n A

(say) polynomial in ? The computation can learn about by making queries on n M 0A n A y

selected strings and observing the answers . y A y()

2. One can also define oracle circuits that have special oracle gates with some number of m

input wires and enough output wires to give the answer on any .f y() y ∈ 0, 1{ }m

3. An ordinary electrical test kit behaves that way. It is a circuit with a place(s) for you to insert one
or more (possibly-defective) electrical components . The test results should diagnose A

electrical facts about .A
4. Quantum circuits for all of the Deutsch, Deutsch-Jozsa, Simon, Shor, and Grover algorithms

work this way. They involve an oracle function given in reversible form f : 0, 1 0, 1{ }n → { }r

as the function defined by:F : 0, 1 0, 1 { }n+r → { }n+r

. F x, z = x, f x ⊕ z() (())

Usually is and the comma is just concatenation (i.e., tensor product) so the output is just z 0r

. In the simplest case , is a two-(qu)bit function. Some examples:xf x() n = r = 1 F

• If is the identity function, , then .f f x = x() F x, z = x, x⊕ z = CNOT x, z () () ()

• If , then : , , , .f x = ¬x() F x, z = x, x ↔ z() () F 00 = 01() F 01 = 00() F 10 = 10() F 11 = 11()

• If is always false, i.e., , then is the identity function.f f x = 0() F

• If , then , so , , , f x = 1() F x, z = x, ¬z() () F 00 = 01() F 01 = 00() F 10 = 11() F 11 = 10.()

These are all deterministic as functions of two-qubit basis states, so they permute the quantum
coordinates , , , and . Recall that gives the permutation that swaps 1 = 00 2 = 01 3 = 10 4 = 11 CNOT

the coordinates 3 and 4, that is, in swap notation. In full, we have:CNOT = 3 4()

, , , .F = 3 4id () F = 1 2¬ () F = 0 () F = 1 2 3 41 ()()

The functions and are constant. The identity and functions have one true and f x = 0() f x = 1() ¬

one false value each, so they balance values of and . The question posed by Deutsch is:0 1

How many queries are needed to tell whether is constant from whether is balanced?f f

If we just think of , suppose we try the query and ask for . If we get the answer "f y = 0 f y()

 then it could be constant-false, but could also be the balanced identity function. The f 0 = 0"() f f

answer would leave both constant-true and negation as possibilities. Likewise if we try f 0 = 1()

. The first point is that this impossibility of hitting things with one query carries forward to the y = 1

way we have to modify the problem for quantum:

How many queries are needed to tell apart from ?F or F(id ¬) F or F(0 1)

It seems like we have more of a chance because now we can query two things: , , , or . Or in 00 01 10 11

the permutation view, we can query , , , or . The problem is that the range of answers we y = 1 2 3 4

can get is too limited for this to help. and can only be ro ; and can only be or F 1() F 2() 1 2 F 3() F 4() 3

. So suppose you query and get the answer . Then could be or could be . The 4 y = 3 4 F Fid F F1

basic problem for a classical algorithm is that every quadrant of the following diagram has both a
straight and a cross:

A quantum circuit, however, can make one query to an oracle gate for any of these four functions, and
can distinguish a member of the first pair from a member of the second pair by the answer to one qubit
after a measurement. The input is not but instead ; that is, the ancilla is initialized to , not to 00 01 1

. Here is the wavefront ("maze") diagram of how it works:0

There is, IMHO, an "unfair" aspect of the comparison. The classical algorithm is being allowed to
evaluate the oracle only at basis vectors. The quantum algorithm gets to evaluate it at a linear
combination---indeed, it's the state

 = - + - + -
1

2
00 01 10 11

from the Fri. 12/4 lecture. If we do the kind of linear extension of Boolean logic that was covered as the
"Binary Linear Equations" presentation option, then we can solve the problem in one shot classically by
evaluating at the point and seeing where the signs end up in the resulting vector. FYI: 1,-1, 1,-1() -
https://rjlipton.wordpress.com/2011/10/26/quantum-chocolate-boxes/

00

01

11

10

Fid F¬ F0 F1

1

2

00

01

11

10

00

01

11

10

input x = 01

-1

-1 -1

-1

-1

-1

-1

-1

F1

Example: Superdense Coding

It is easy to rig cases where you can distinguish them exactly by asking one query and F , F , F , F0 1 2 3

measuring both qubits. Just define , for instance. "Superdense coding" is a case where the F 00 = ii()

rigging has a bit of surprise because it appears to convey 2 bits of information with just 1 qubit of
communication. This is impossible by Holevo's Theorem that qubits can yield only bits of classical n n

information. (Another instance of this that you can input bits of information by choosing the ∼ n
1

2
2 CZ

gates for edges of an undirected -vertex graph in a graph-state circuit on qubits, one for each n G CG n

vertex, but you can only get bits of information out by measuring. Hence graph-state encoding is n
majorly lossy.) The rub is that the rigging involves the communicating parties "Alice" and "Bob" already
having exchanged 1 bit of information in order to set them up with an entangled qubit pair.

We will regard it as a nice case of the learning problem because it uses the four Pauli matrices. We
want to identify one of the following four possibilities exactly by the results of two qubits.

This time the input is . To work it out via wavefronts:00

00

01

11

01
-1

-1

-1

-1

I ⊗ I X ⊗ I Z ⊗ I -iY ⊗ I = XZ ⊗ Y

00

01

11

01

00

01

11

01

input x = 01

-1

-1

-1

-1

Example: Quantum Teleportation

Deutsch-Jozsa Extension

Getting back to Deutsch's Problem, Richard Jozsa added that if you only care about distinguishing
constant functions from balanced ones, then you can make the classical f : 0, 1 0, 1{ }n → { }

algorithms require queries, while the quantum ones can still do it on one query to a completely 2 + 1n-1

separable superposed state. This is a conditional problem, called a promise problem, in that it only
applies when is in one of those two cases. If is neither balanced nor constant, then "all bets are f f

off"---any answer is fine, even . ¯ \ _ ツ _ / ¯ ()

The maze diagrams would get exponentially big, but we can track the computations via linear algebra.
It is like Deutsch's setup except with in place of the first , input in place of , and H

⊗n
H 0 1n 01

targets (ignoring the normalizers):2

• constant (instead of , so that is certainly measured.↦ +0n 0 1 +00 01 0n

• balanced (instead of , such that is certainly not measured.↦ ? +10 11 0n

The key observation is that for any , any argument , and , the amplitude in the f x ∈ 0, 1{ }n b ∈ 0, 1{ }

component of the final quantum state isxb 𝜙

.-1 -1
1

2n+1

∑

t ∈ 0,1{ }n

()x•t()f t ⊕b()

Here means taking the dot-products (which is the same as) and adding them up x • t x ⋅ ti i x ∧ ti i

modulo (which is the same as XOR-ing them). Well, when this is always just zero, so the 2 x = 0n

first term is and just drops out, leaving -1()0

.𝜙 0 b = -1 -1n 1

2n+1

()b ∑

t ∈ 0,1{ }n

()f t()

Note that the term is independent of the sum over , so it comes out of the sum---and this is why -1()b t
we get two equal possibilities in the original Deutsch's algorithm as well. Ths final point is that:

• When is constant, these terms are all the same, so they amplify---giving for the constant-f
1

2

false function and for constant-true. Both of these amplitudes square to and so together -1

2

1

2

soak up all the output probability, so that is measured with certainty.0n

• When is balanced, the big sum has an equal number of and terms, so they all interferef +1 -1

 and cancel. Hence will certainly not be measured.0n

Added: A randomized classical algorithm can efficiently tell with high probability whether is constant f

by querying some random strings. If it ever gets different answers then definitely is not f y ≠ f y'() () f
constant. (So, under the condition of the "promised problem," it must be balanced.) If it always gets
the same answer, then since any balanced function gives 50-50 probability on random strings, it can
quickly figure that is constant. But it is still the case that a deterministic algorithm needs f
exponentially many queries and hence exponential time.

