
CSE610 Week 8: The CHSH Game and Bell's Theorem
 
First, a summary of recent lectures.  A key property of the traceout operation is that the sum of each 
slot where an identity-matrix "stencil" would be placed to "trace out Bob" is preserved by any unitary 
operation  that Bob applies to his qubits---i.e., to his part of the joint system.  This is an extension of U

the fact that the operation  preserves the trace of  when  has the same dimension as .  𝜌 U𝜌U→
* 𝜌 U 𝜌

The conclusion that none of Bob's unitary actions change her density matrix is called the No-
Communication Theorem in Aaronson's notes.
 

• If Alice has no entanglement with Bob, this is obvious: if there is never any communication from 
Bob to Alice at all, there is just no effect.

• The point is that this is true even if they share however many entangled qubits (or qutrits etc.): 
absent any communication, Alice cannot detect any unitary actions by Bob.

 
If Bob measures, however, then there is an instantaneous effect on Alice's density matrix.  For an 

entangled Bell pair, Alice's density matrix  becomes one of the following, depending both on 0.5 0

0 0.5

Bob's actions and on Bob's results:
 

1. If Bob uses the  measurement and gets , Alice has .,0 0 1 1 0
1 0

0 0

2. If Bob uses the  measurement and gets , Alice has .,0 0 1 1 1
0 0

0 1

3. If Bob uses the  measurement and gets , Alice has .,+ + - - +
0.5 0.5

0.5 0.5

4. If Bob uses the  measurement and gets , Alice has .,+ + - - -
0.5 -0.5

-0.5 0.5

5. If Bob uses  where  and , then Alice has ,𝜅 𝜅 𝜆 𝜆 = 0.6, 0.8𝜅 [ ]T 𝜆 = 0.8, -0.6[ ]T

either  or  , again depending on Bob's outcome.0.36 0.48

0.48 0.64

0.64 -0.48

-0.48 0.36

 
If Bob measures in the standard basis and gets an unusually large number of  results on many 1

qubits shared with Alice---say 70 out of 100---and if Alice measures in the same basis, then Alice will 

learn that Bob got an unusual statistical outcome.  If Alice measures in , however, ,+ + - -

then she will remain ignorant of Bob's stroke of luck.  Yet even if Alice does know in advance that Bob 
measures all the qubits first (for those cognizant of relativity, this means "first" as judged in Alice's 
reference frame) in the standard basis, she does not get any willful message from Bob---she merely 
learns the chance results he got.
 
The question that concerned Einstein is whether Bob can send a willful message to Alice through their 
entanglement by choices of measurement bases.  My use of "willful" here is willful: pace quantum-
based arguments against free will, it is IMHO the clearest way to frame the technical argument.  All 

 

 

https://www.scottaaronson.com/qclec.pdf


agree that Alice gains information of Bob's random outcomes, though that information was "pre-paid" 
by 
the interactions that set up  entangled qubits to begin with.  The point of superdense coding is that n

Bob could distinguish among  willful actions by Alice after the initial exchange of one entnagled qubit, 4

when it was followed by her sending  other qubit.  Can something like this be done without any further 1

interaction---and over time intervals shorter than the time for light to travel between Alice and Bob?
 
Most in particular, can Alice gain any willful information---other than unstructured randomness---from 

how Bob orients his measurements?  The answer is no.  If they share  (over ) you +00 11 2

might think Bob could guarantee a ' ' by measuring in the  basis, but no: that was the first 1 ,+ -

decoherence example with Alice.  Any basis Bob uses is the same as a unitary  to convert to the U

standard basis followed by a measurement there, and  has no effect on what Alice will see.U

 
This makes it all the more amazing that there are situations where willful choice of measurement basis 
does make a difference when there is followup classical communication---a difference that has been 
quantified in actual experiments.
 
The CHSH Protocol
 
Alice and Bob share  Bell pairs and can have as much prior classical communication to agree on n

strategies as they please.  Between the start and end of a trial---one play of the game---they may not 
communicate with each other, but they may observe common sources.  The common source can not 
only be random---such as from patterns of solar flares both Alice and Bob can see---it can be controlled 
by an oracle "Ozzie" who is trying to help Alice and Bob.  Each trial operates via classical 
communication with a third party, "Ralph" (to sound like ref, referee) and goes like this:
 

1. Ralph sends a random bit  to Alice and a bit  to Bob.  Neither can see the other's bit.a b

2. Alice sends a response bit  to Ralph and Bob simultaneously sends his response bit  to Ralph.u v

3. Ralph declares that Alice and Bob win the trial if .u⊕ v =  a∧ b

 
We may suppose that Alice and Bob receive  and  in sealed boxes, and give their respective  and  a b u v

within a nanosecond of opening their boxes.  Without loss of generality, we may suppose that any other 
influence from observations or "Ozzie" has been registered by that instant.  At that point, Alice's  is a u

one-bit Boolean function of  alone.  We use  for the inputs to this function but give the outputs as Y a 0, 1

for "yes" or N for "no" in order to keep inputs and outputs visually separate.  There are just four 
functions that she can use:
 

• The always-true function: yes to  and yes to , which we call YY.0 1

• The always-false function, which we similarly call NN.
• The identity function, giving Ralph the same bit back, which is NY.
• Flipping Ralph the bit, which is YN.  

 
Bob has the same four options, so there are in total 16 different strategies they can use for any trial.  
Meanwhile, Ralph has his own four possible actions.  Here is the entire matrix of possibilities.  The 

 

 



matrix entries are numeric rather than Boolean:  if Alice and Bob win,  if they lose.  The rows are the 1 0

four options by Ralph, in order  so that for instance, if Alice and Bob adopt the strategy in the third a, b

column and find that Ralph chose , then Alice says  while Bob says ---and they lose because 1, 0 N Y

their answers disagreed while  is false.  1∧ 0

 
Alice NN NN NN NN NY NY NY NY YN YN YN YN YY YY YY YY

Bob NN NY YN YY NN NY YN YY NN NY YN YY NN NY YN YY

0, 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

0, 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

1, 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

1, 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

 
Note that when Ralph plays randomly, Alice and Bob can assure 75% winning if they choose any of the 
eight columns with three s as their joint strategy.  They cannot do better, because every column has 1

a case where Ralph could send them something that makes their joint strategy lose---and the 
randomized Ralph does so with 25% probability.  
 
The amazing fact is that sharing one entangled Bell pair enables Alice and Bob to do much better: to 
win over 85% of the time.  
 
A side note if you are familiar with matrix game theory: could Ralph do better with non-random play if 
he 
knew Alice and Bob's strategy?  Certainly if Alice and Bob always play one fixed column, such as both 
always saying , then Ralph could always deny them by giving the one losing combination .  If you N a, b

know the Minimax Theorem of zero-sum matrix game theory, then you already know that because 
25% is Ralph's optimum when he has to move first, Alice and Bob must have a classically randomized 
strategy that assures them 75% even if Ralph is told about it in advance.  We can find it easily by first 
removing the eight "obviously stupid" joint strategies---those with only one  in their column---leaving:1

 
Alice NN NN NY NY YN YN YY YY

Bob NN NY NN YN NY YY YN YY

0, 0 1 1 1 0 0 1 1 1

0, 1 1 0 1 1 1 1 0 1

1, 0 1 1 0 1 1 0 1 1

1, 1 0 1 1 1 1 1 1 0

 
Now if Alice and Bob use their shared classical randomness to choose one of the leftover strategies at 
random with probability , there is no way Ralph can avoid their winning 75% of the time even if 1 / 8

Ralph knows that is their policy.  If Ralph could steal their random bits by looking at solar flares and 
knowing how and when Alice and Bob will decode them, then Ralph could still always send the bad 
combo.  But the order is: Ralph commits to the  combo first, then Alice and Bob have a moment to a, b

read the shared random source that determines their policies before they open their boxes.
 
The scientific significance does not require this detail---we just stipulate that Ralph plays randomly.

 

 



 
 
The Quantum Case
 
Alice and Bob get an extra option using one shared Bell pair per trial: Each can measure ina basis that 
depends on the bit received from Ralph.  The timing of this option is synchronized as viewed by Ralph.  
The text describes Alice as measuring first, but we'll make Bob go first for consistency with recent 
lectures.  By symmetry, it does not matter who goes first.  What does matter, technically, is that the time 
lapse from opening the boxes to the second measurement---as viewed by Ralph---must be less than 
the time it would take light to travel from Bob to Alice.  This is in order to avoid one of several possible 
"loopholes" that could enable a classical explanation.  
 
Rather than the Bloch sphere, this is a case where the Cartesian diagram of state vectors is best for 
visualization:  at east (E),  at north (N),  between them facing northeast (NE), and  to the 0 1 + -

southeast (SE).  Alice will use either the  or  measurement.  We ,0 0 1 1 ,+ + - -

let the former outcomes stand for "yes", so we can abbreviate her options as E or NE.  Bob has a 
funkier set of bases to choose from.  He can use the basis that orients his "yes" answer at , which 22.5∘

we call ENE for east-northeast, and puts "no" at  (or equivalently, at , i.e., ).  Or 112.5∘ -67.5∘ 292.5∘

Bob can use the basis that puts "yes" at , which is NNE for north-northeast.  Here is the protocol:+67.5∘

 
1. Alice and Bob open their boxes simultaneously.
2. If , Bob measures his entangled qubit in the basis oriented ENE; if , Bob chooses b = 0 b = 1

NNE.
3. If , Alice instantly chooses NE, else she chooses E.  No more than a nanosecond later a = 0

than Bob's actions, Alice measures her qubit in her chosen basis.
4. Each sends Ralph "yes" if ey received the measurement outcome designated "yes", else "no".

 
(In the great pronoun debate, I've supported the "Alternative" version {ey, em, eir, emself} of the 
pronouns in Michael Spivak's 1979 handwritten first volume of his Differential Geometry text, which I 
had in a course that year.  Those had actually been proposed by Christine Elverson of Chicago in 1975. 
 But I chickened out of using them in my textbook with Lipton, and Wikipedia doesn't say they appeared 
in Spivak's 1983 published version, only that he used them in a later handbook on LaTeX.)
 
The upshot can be appreciated ahead of any thinking about the underlying physical reality, just by 
looking at the diagram of the choices made by Alice and Bob in the four cases Ralph can send them:
 

 

 



Alice's chosen orientations depend only on her bit from Ralph: northeast on , due east on .  Bob 0 1

likewise reacts independently of Alice.  Yet the options combine to make their "yes" orientations come 
within  of each other in all of the , , and  cases from Ralph, yet  apart on .  22.5∘ 00 01 10 67.5∘ 11

 
If being one-fourth of a right angle apart meant a one-fourth chance of losing, then the resulting 
chances would be no different from the classical case: 75% frequency of winning.  But in ways we can 
actually see for ourselves by orienting polarizing filters at these angles and telling how much light gets 
through, in the first three cases, the chance of her qubit instantly transformed(?) by Bob's outcome 

giving the same yes/no answer from her -apart measurement is greater: . 22.5∘ = 85.3553... %cos2 𝜋

8

 And in the fourth case, the frequency of Alice and Bob giving different answers and winning is the 
same.  
 
Well, saying "transformed" is exactly the kind of spukhafte Fernwirkung that Einstein objected to.  But 
this is the straightest path to expressing the explanation for what we observe---which has been verified 
in actual experiments achieving over 80%.  The gap between 80% and 85+% is ascribable in 
substantial part to the kind of slight-degrading errors we saw in the "depolarization and de-phasing" 
section (plus to other slight flaws in the apparatus and its nanosecond timing). 

 

 


