
CSE610 Lecture Week 9: Quantum Walks
 
We first discuss classical random walks on graphs to set the points of comparison.  The simplest graph 
is a path on  nodes, where we might let  go to infinity and/or connect the nodes in a circle:2n+ 1 n

A walker starts at  and flips a fair coin, stepping  for heads and  for tails.  Here are some 0 +1 -1

questions to ask about eir location after  such steps:t
 

1. What is the expected distance from the origin ?0
2. How about the expected squared distance, and its square root?
3. What is the expected time to reach cell ?  +n

4. How many different nodes would we expect to be visited within  steps?t
 
We can ask these questions also about biased cases where the probability of heads is  and tails is p

.q =  1- p
 
Question  is the easiest: the answers are given by the variance and standard deviation of the 2

binomial distribution .  The variance of  independent trials is , so the standard deviation is Bp t tpq

.  This equals  when .  So for  random steps, the standard deviation is . tpq
1

2
t p = q = 0.5 t = 100 5

 We can also say the one-sigma range is  and the "usual margin of error" is .  (This presumes ±5 ±10

the graph is large enough to accommodate  steps in any direction.)t
 
Question  is a little different.  By averaging the absolute displacement rather than its square, the 1

expectation is a little closer to the center:  rather than .  The growth order is the same.t

2𝜋 2

t

 
Question 3 is inverse to questions 1 and 2.  The growth order is quadratic in ---if the graph is finite. n
There is a surprising, maybe shocking, difference if the graph is actually infinite.  Consider:
 

Here the rule is that at cell , heads goes to cell 1 but tails stays on .  Now let  stand for the 0 0 E m[ ]

expected time to reach cell  when starting from cell , .  By definition, .  We n m 0 ≤ m ≤ n E n = 0[ ]

recurse, however, from the other end.  First, .  This is because we E 0  =  1 +  0.5E 0  +  0.5E 1[ ] [ ] [ ]

take  step and then have a 50% chance of having made no progress and a 50% chance of making a 1

positive step.  Next, .  This time, tails does lose a step of progress.  E 1  =  1 +  0.5E 0  +  0.5E 2[ ] [ ] [ ]

Now we can solve for both  and  in terms of :E 1[ ] E 2[ ] E 0[ ]
 

 

 

0 +1 +2 +3 +4-2 -1-3-4-n +n… …

0 +1 +2 +3 +4 +n…

G  =  n



E 1  =  E 0 - 2[ ] [ ]

E 2  =  2E 1 -E 0 - 2 =  E 0 - 6[ ] [ ] [ ] [ ]
 
Now we keep going, using , so E m  =  1 + 0.5E m- 1 + 0.5E m+ 1[ ] [ ] [ ]

, and always substituting values down to :E m+ 1  =  2E m  -  E m- 1 - 2[ ] [ ] [ ] E 0[ ]
 

;E 3  =  2E 2 -E 1 - 2 =  2E 0 - 12-E 0 + 2- 2 =  E 0 - 12[ ] [ ] [ ] [ ] [ ] [ ]

;E 4  =  2E 3 -E 2 - 2 =  2E 0 - 24-E 0 + 6- 2 =  E 0 - 20[ ] [ ] [ ] [ ] [ ] [ ]

;E 5  =  2E 4 -E 3 - 2 =  2E 0 - 40-E 0 + 12- 2 =  E 0 - 30[ ] [ ] [ ] [ ] [ ] [ ]
...

.E n  =  E 0 - n + n[ ] [ ] 2

 
But  from above, so this means  is the expected time to get to cell .  Which E n = 0[ ] E 0 = n + n[ ] 2 n
again is quadratic.  
 
----------------------------------------------------------------------------------------------------------------------------
Digression (Piazza challenge rather than HW): Now, as a curious exercise, try it with the graph

where the only change to the first pic above is adding an edge left of  to convey that the graph is -n

infinite in that direction.  Note that nodes to the right of  do not matter, and because of this, we can +n

flip the indexing around so that the goal node is  and the indexing of other nodes is positive saying 0

how far away from  they are:0

 
Here we have  and , so .  And: E 0 = 0[ ] E 1 = 1 + 0.5*0 + 0.5E 2[ ] [ ] E 2 = 2E 1 - 2[ ] [ ]

, so .  We actually have the same E 2 = 1 + 0.5E 1 + 0.5E 3[ ] [ ] [ ] E 3  =  2E 2 -E 1 - 2 =  3E 1 - 6[ ] [ ] [ ] [ ]

recursion formula as before: , so continuing along:E m+ 1 = 2E m -E m- 1 - 2[ ] [ ] [ ]
 
E 4  =  2E 3 -E 2 - 2 =  2 × 3E 1 - 2 × 6 -  2E 1 + 2- 2 =  4E 1 - 12[ ] [ ] [ ] [ ] [ ] [ ]

E 5  =  2E 4 -E 3 - 2 =  2 × 4E 1 - 2 × 12- 3E 1 + 6- 2 =  5E 1 - 20[ ] [ ] [ ] [ ] [ ] [ ]

E 6  =  2E 5 -E 4 - 2 =  2 × 5E 1 - 2 × 20- 4E 1 + 12- 2 =  6E 1 - 30[ ] [ ] [ ] [ ] [ ] [ ]
...

.  E n  =  nE 1 - n - n[ ] [ ] 2

 
Predicated on the assumption that  has a fixed, finite value (after all, ), we'll leave you to E 1[ ] E 0 = 0[ ]
interpret what this means...this is what one can call a "predicament."
----------------------------------------------------------------------------------------------------------------------------

 

 

0 +1 +2 +3 +4-2 -1-3-4-n +n… …

01234
…

5678910…nn+ 1



 
Question  builds on question .  In the case of our path graphs with binomial distribution, as long as 4 3

, the answer is that the expected number of different nodes visited within  steps is .  t ≪  n2 t O t

We may care more about the expected number of visits to nodes that are furthest from the starting 
point.  This leads to the larger issue of how fast the initial distribution diffuses into the rest of the graph. 
 
 
If the graph is a directed graph, the expectations can change drastically.  The most fiendish such case 
is when all nodes have a directed edge going back to node .  0

It is still the case that every node (other than ) has two out-edges, one goping right for heads and +n

the one going to cell  for tails.  Now the only way to reach node  is sometime to get  heads in a row. 0 n n

 The expected time to do that is , which is exponential.  This huge difference from the undirected O 2n

case can be chalked up to lack of reversibility.  If the edges went both ways, there would also be a 
chance of getting from  to  by a big leap followed by just a few more lucky steps on heads.  Quantum 0 n
systems are ipso-facto reversible, so we should not expect the directed case to apply.  (We will, 
however, use directed graphs as a tool to visualize quantum walks.)
 
 
Classical Random Walks in General Graphs
 
The degree  of a vertex  is the number of edges going out of , counting any self-loop at  (if dv v v v

allowed) once.  If  is the same for all , then the graph is -regular.  It is possible for a graph  d = dv v d G

to be infinite and yet have  be finite for all nodes ; the infinite path graph is an example with  dv v d = 2v

for all .  In such cases,  is called locally finite.  (There is a further breakdown into whether there is a v G

fixed finite bound  such that  for all nodes , but I do not know a standard name for that b d  ≤  bv v
condition.)
 
Definition: The "standard" classical random walk on a (locally-)finite graph  has steps that go from G

a node  to any one of its neighbors  with probability .  The matrix  is called the i j A i, j = 1 / d[ ] v A
transition probability matrix of the walk.
 
For example, the transition matrix  of the standard walk on the graph  at left is shown at right.A G

 

 

0 +1 +2 +3 +4 +n…

G'  =  n



 
The matrix  is row-stochastic, meaning that the values in each row sum to .  It is not column-AG 1

stochastic, because  is not regular---for instance, column  sums to more than .  Any -regular G 2 1 d

graph  makes  doubly stochastic---and then  is just the ordinary adjacency matrix of  G AG AG G

divided by .  d
 
It is possible to define transition probabilities different from those of the standard random walk on .  G

For instance, we could stipulate that node  has only a  probability of going to node 2, node 4, or node 1
1

6

5, but a  probability of going to .  Doing similarly with nodes , , and  has the same effect as 1

2
3 2 4 5

"regularizing" the graph by tripling each edge to node 3 or node 6, and makes the revised transition 
matrix  double-stochastic after all.  Some graphs are not regularizable by replicating edges or A'G
assigning weights, however, including the "lollipop" graph we've used elsewhere:

The problem is that however we replicate or weight the edge between 2 and 3, there will always be 
more weight at node 2 than at weight 3.  Unless we make the weight of the edge  zero, that is.  1, 2( )
The alternative is adding a loop to state 3, but that is really a different graph.
 
We can track the expectations for steps of the quantum walk in the same way we've seen with quantum 
state vectors, but this time using classical probability not amplitude.  The row-vector 

 stands for a probability distribution that is entirely concentrated on node .  This x = 1, 0, 0, 0, 0, 0[ ] 1
represents our "walker" starting in a definite position.  Unlike with quantum updates, it seems to be 
more usual to use row vectors and multiply them on the left.  Here we get
 

x 1  =  xA  =  0, 0.25, 0, 0.25, 0.25, 0.25  =  0, 1, 0, 1, 1, 1( ) G [ ]
1

4
[ ]

 
as the probabilities after one step.  To do more steps we just multiply again and again:
 

;    x 2  =  x 1 A  =  , , , , ,  =  5, 2, 2, 2, 4, 1( ) ( ) G
5

16

1

8

1

8

1

8

1

4

1

16

1

16
[ ]

 

 

G

1 2

3

45

6

p 1 2 3 4 5 6
1 0 0.25 0 0.25 0.25 0.25
2 0.25 0 0.25 0.25 0.25 0
3 0 0.5 0 0.5 0 0
4 0.25 0.25 0.25 0 0.25 0
5 0.25 0.25 0 0.25 0 0.25
6 0.5 0 0 0 0.5 0

A  =G

1 2 3

0.5 0.5 0
0.5 0 0.5
0 1 0



.x 3 = x 2 A  =  , , , , ,  =  12, 15, 4, 13, 11, 9( ) ( ) G
3

16

15

64

1

16

13

64

11

64

9

64

1

64
[ ]

 
We could get the same effect by taking powers of .  The first row of  is , the first row of  is AG A2

G x 2( ) A3
G

, and so on.  Is there a distribution  such that ?  If so, then  must be a row-eigenvector x 3( ) x xA = xG x

of  with eigenvalue .  If  is -regular then this is obvious: the uniform distribution on the  nodes AG 1 G d n

is stationary.  For this particular , we can skip the route of first diagonalizing  and use the G AG

symmetry to solve in brute force:
 

p, p, q, p, p, q A  =  p, p, q, p, p, q[ ] G [ ]
 
gives the equations  and (using just column 3 of the matrix) , so  and 4p+ 2q = 1 0.5p = q p = 0.2

.  This givesq = 0.1

.x =  x  =  , , , , ,G
1

5

1

5

1

10

1

5

1

5

1

10
 
Surprised to get fifths out of a matrix with denominators  and ?  Well, there are ten edges, and there 2 4
is a simple formula that works for the standard classical random walk: 
 

.x u  =  G[ ]
d

d

u

∑
 

v v

 
When there are no self-loops, the denominator is the same as twice the number of edges in the graph.  
For the lollipop graph , however, we get denominator  not : , and to verify: G 5 6  x = 0.4, 0.4, 0.2G [ ]

.0.4, 0.4, 0.2  =  0.2 + 0.2,  0.2 + 0.2,  0.2  =  x[ ]
0.5 0.5 0
0.5 0 0.5
0 1 0

[ ] G

 
Then  is called a (the) stationary distribution for  and represents the long-run expectation of the xG AG

classical random walk.  Here is a remarkable fact:
 
Theorem.  If  is connected, then there is a unique stationary distribution .  Moreover, if  is not G xG G

bipartite, then for any input distribution ,  converges to  as ; likewise, the powers  of x x t( ) xG t ∞→ At
G

 converge to the matrix whose rows all equal .AG xG
 
This is a special case of a more-general theorem about discrete Markov chains.  We can see the 
convergence happening in our 6-node example: for  the matrix ist = 10
 

 

 



and for  it ist = 20

Curiously, the convergence for our lollipop-graph example is not as fast although the graph is smaller.  
For , respectively, we get:t = 10, 20, 30
 

 
Only on  is the convergence visually clear (IMHO).  If we add a loop at node  to make the graph A30 3
regular, the limiting distribution is uniform and the convergence becomes quite fast again:
 

 
Finally coming back to our questions 3 and 4, the issue is how fast this convergence goes as a function 
of  (and distance  from the starting node) in general graphs.  Given any , the mixing time is n m 𝜖 > 0

the least  such that the convergence is within  (in each entry of  or however measured), and the t 𝜖 At

mixing rate expresses this as a function of  (and the size  of the graph).  The short answer is that 𝜖 n

the time is never worse than the  that we computed for the path graphs.  But it is also generally O n2

not better. This is the springboard for interest in quantum walks.
 
 
Quantum Walks
 
One principle of quantum mechanics that we have covered distinguishes between modeling part of a 
system and the whole system.  In a classical random walk we might think of "the system" as the graph 

 and the current position of the walker, but there is also the source of randomness, which is often G

 

 

A10 A20 A30

A =  
0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

A  =  10
0.33398 0.33301 0.33301
0.33301 0.33398 0.33301
0.33301 0.33301 0.33398



called "the coin."  We can still represent the system as a composite, but we need to allow (states 
involving) the two parts to become entangled.  
 
An earlier principle is that any quantum object lives in a "Hilbert Space", so we can postulate a space 

 for the graph and a space  for the coin.  The notion of the walker on the graph will be HG HC

subsumed by a state that incorporates status info from both systems.  Basis elements of the composite 
system  (if you recall discussion in early lectures, it is not the ordinary Cartesian product H ⊗HG C

) will be separable, but their linear combinations can be entangled.H ×HG C

 
Let  represent the current "basic vertex" of the walker, and  a basic outcome of the coin.  Then v c

 is the joint state of the system.  State vectors  have entries  over all vertices  and vc a a vc[ ] v

outcomes .  There is one immediate and maybe surprising difference from how graphs have been c
represented before.  Instead of one qubit per node, as with graph-state circuits, now we need only as 
many qubits as it takes to count  from  to .  That is only  qubits.  We thus get simply v 1 n ℓ = ⌈ n⌉log2

 of size , as opposed to the -dimensional Hilbert space underlying  qubits. Likewise, the H = VG n 2n n

coin space  becomes just the set  of coin outcomes; if  for heads and tails, then we HC C C =  H,T{ }

need just one qubit for it.  The representation is thus more compact, and the matrix  for the  side A' HG

of the space has the same size-order as . This hints that the goings-on within  have a classical AG HG

skeleton.
 
If  uses  qubits, then an operator on  is given by a  matrix .  Even though HC r H ⊗HG C 2 × 2ℓ+r ℓ+r U

we are not in the context of density matrices, the traceouts  and  are both well-Tr UHC ( ) Tr UHG ( )

defined.  If the coin uses the last  quantum coordinates (in big-endian notation, say), then each entry r

of the  matrix  is obtained by summing the  diagonal elements of the 2 × 2ℓ ℓ A' =  Tr UHC ( ) 2r

corresponding  submatrix of .  2 × 2r r U

 
Speaking from formal mathematics, I would like to be able to give an "axiomatic" definition of a 
quantum walk, something like this:
 
Definition(?)  A quantum walk on a graph  is defined by a unitary matrix  acting on a joint space G U

 such that  gives a classical random walk on .H ⊗HG C Tr UHC ( ) G
 
This might need the added requirement that , which acts on , is unitary.  But the intent is Tr UHG ( ) HC

that  after "tracing out the coin" need not be unitary---it could and maybe should be classical.  The A'

waffle is in the word "gives".  One might think to say that  is a row-stochastic matrix denoting a A'

classical random walk on , maybe even the standard one, but the mathematical truth is otherwise---G
and comes with "ample amplitudinal attitude."  I still have not found a simple definition in this style 
online---see below for why it gets trickier.
 
Instead, what I found in my sources, used for the textbook (in 2014), and what Wikipedia still gives 
(note the request for expansion dating to Dec. 2009!) is an "operational" definition: 
 

 

 

https://en.wikipedia.org/wiki/Quantum_walk#Discrete_time


The evolution of a quantum walk in discrete time is specified by the product of two unitary operators: 
(1) a "coin flip" operator and (2) a conditional shift operator, which are applied repeatedly.

 
I used a slightly more general form that allows entanglement, but it still feels ad-hoc and is limited to -d
regular(izable) graphs.  Each non-loop edge  has two labels in , one outgoing from  u, v( ) 1, … , d{ } u

and incoming to , the other outgoing from  and incoming from .  Loops have just one label that is v v u

both incoming and outgoing.  The outgoing labels at a node  denote the actions of a walker on that u

node from the  possible outcomes of the "coin" (or rather, -sided die).  We need to do all the labels so d d

that not only does each node have  separate outgoing labels, each has  separate incoming labels.  d d

For example, if we add another loop to the "lollipop" graph we make it -regular and can do the labels 2

with  and  for heads and tails to meet the extra requirement:H T
 

 
The requirement makes the map  one-to-one, where  is the destination for the coin u, c v, c( ) → ( ) v

outcome  at vertex .  It is thus a permutation of  (with ordinary Cartesian product), which we c u V×C
can represent both in linear form as

1H 1T 2H 2T 3H 3T
1H 2T 3H 1T 2H 3T

 
and as a permutation matrix (which is symmetric because the permutation is self-inverse):
 

P =

 1H 1T 2H 2T 3H 3T
1H 1 0 0 0 0 0
1T 0 0 0 1 0 0
2H 0 0 0 0 1 0
2T 0 1 0 0 0 0
3H 0 0 1 0 0 0
3T 0 0 0 0 0 1

 
If we represent the vertices as a qutrit then we actually do have proper quantum coordinates (here, in 
"big-endian" order), though again the vertices are underlying, not separate quantum entities.  A single 
qutrit is acted on by a  rather than  unitary matrix, including the  identity matrix .  We 3 × 3 2 × 2 3 × 3 I3

can get another  matrix in the form , where  is a unitary  matrix acting on 6 × 6 Q = I ⊗C3 C 2 × 2

 as the coin space.  Whatever matrix we choose for , the product,H T C

P ⋅Q 𝜙
 
represents first flipping the coin and then moving the walker according to the (superposed) outcome.  
The six standard basis states for  are  for  and ; these are 𝜙 vc v ∈ V = 1, 2, 3{ } c ∈ C = H,T{ }

 

 

1 2 3

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

H H HT T T
G =  A  =  G



separable but superpositions of them generally won't be.  If we choose the Hadamard matrix  as the H

coin matrix, then we get
 

,      .Q =  I ⊗H =  3

1

2

1 1 0 0 0 0
1 -1 0 0 0 0
0 0 1 1 0 0
0 0 1 -1 0 0
0 0 0 0 1 1
0 0 0 0 1 -1

PQ =  
1

2

1 1 0 0 0 0
0 0 1 -1 0 0
0 0 0 0 1 1
1 -1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 -1

 
Then  is the unitary matrix for one step of the quantum walk.  When we trace out the coin U = PQ

(summing the pair of colored numbers in each box), we get the  matrix3 × 3
 

.A =  
1

2

1 -1 0
-1 0 1
0 1 -1

 
It is not ; its rows and columns all happen to add to  not .  Nor is it unitary: AG 0 1
 

.A  =  2 1

2

2 -1 -1
-1 2 -1
-1 -1 2

 
The matrix  is Hermitian, but it is not a density matrix because the trace is .  The matrix  does, A 0 A

however, kind-of represent the classical walk: it would equal  if you squared each entry.  That AG

tempts us to think that  gives amplitudes for the standard classical walk in genera. But we Tr UC( )

will see that tracing the matrix breaks under powers of  for reasons that are subtle (meaning, I may U

not understand them---"I was only following sources").  
 
Let us move on with the "properly quantum" matrix .  Its action can be visualized via a similar U = PQ

"maze diagram" to before, but as a grid out of .  For a gridpoint , the  stands for the V×C v, c( ) c

previous coin flip.  Since we are applying  to column vectors on the right, not row vectors on the left, U

the point  is a possible destination if .  Then we draw a directed "maze edge" 
from 

v', c'( ) U v'c', vc ≠ 0[ ]

 to .  Here is what we get for our "propeller graph"---sticking the normalizing factor into a v, c( ) v', c'( )
corner so as not to forget it:

 

 



 
Each node in the "expanded graph"  has two arrows coming in and two going out, counting the loops G'

as both.  The two nodes in each column correspond to the same node in the original graph .  If we G

start the walker on node  in the original graph, now we have a whole spectrum of choices: start with 1

the basis vector , the vector , or any superposition of = 1, 0, 0, 0, 0, 01H [ ]T = 0, 1, 0, 0, 0, 01T [ ]T

them.  If we choose , then the state  of the walk after one step (including the retained 𝜎 =0 1H 𝜎1

memory of the previous coin flip) is given by the first column of :U

 

. 1, 0, 0, 1, 0, 0  =  
1

2
[ ]T

+1H 2T

2
 
This is the equal superposition of staying at node  via the loop on heads or moving to node  on tails.  1 2
Here are the next two powers:
 

 
The red  at upper left in  comes about because the paths  and 0 U3 1H 1H 1H 1H→ → →

 have opposite sign and so cancel.  This interference does not mean that the 1H 2T 1T 1H→ → →

 

 

 

 1H 1T 2H 2T 3H 3T
1H 1 1 0 0 0 0
1T 0 0 1 -1 0 0
2H 0 0 0 0 1 1
2T 1 -1 0 0 0 0
3H 0 0 1 1 0 0
3T 0 0 0 0 1 -1

1H
H

1T

1 2 3

T
2T 3T

-1

3H2H

-1

-1

1

2

1H

1T 2T 3T

-1

3H2H

-1

-1

U =2 1

2

1H 1 1 1 -1 0 0
1T -1 1 0 0 1 1
2H 0 0 1 1 1 -1
2T 1 1 -1 1 0 0
3H 1 -1 0 0 1 1
3T 0 0 1 1 -1 1

G' =

U =3 1

2 2

1H 0 2 1 -1 1 1
1T -1 -1 2 0 1 -1
2H 1 -1 1 1 0 2
2T 2 0 1 -1 -1 -1
3H 1 1 0 2 1 -1
3T 1 -1 -1 -1 2 0

U =4 1

4

1H -1 1 3 -1 2 0
1T -1 -1 0 2 1 5
2H 2 0 -1 1 3 -1
2T 1 3 -1 -1 0 2
3H 3 -1 2 0 -1 1
3T 0 2 1 3 -1 -1



quantum walker cannot end up at node 1 after  timsteps.  Ey can do  with a 3 1H 1H 2T 1T→ → →
minus sign that is not cancelled.  This does, however, knock down the overall probability.  To get the 
probabilities, we square the entries of the state vector
 

  to get  .U  =  0, , , , ,3 1H
-1

2 2

1

2 2

1

2

1

2 2

1

2 2

T

0, , , , ,
1

8

1

8

1

2

1

8

1

8

 
Now---using that the coin is little-endian---we say we don't care whether the last flip was  or  by H T

adding the adjacent pairs of values to get the probabilities , .  (The text represents the state ,[
1

8

5

8

1

4
]

vectors as  grids in order to make clearer which pairs to add.)  This means that after three steps, 2 × n

the quantum walker started on node , and with the coin happening to lie heads-up before it is 1
Hadamard-ly flipped the first time---the walker is 5 times as likely to be found on node 2 as on node 1.  
This feels counter-intuitive because  has a self-loop: what easier way to stay there could there be?1
 
The numbers in teal show that if we "trace out the coin" in the matrix , then we get zeroes in three of U3

the entries.  In full,
 

, which on squaring entries becomes .Tr U  =  C
3 1

2 2

-1 1 0
1 0 -1
0 -1 1

1 / 8 1 / 8 0
1 / 8 0 1 / 8

0 1 / 8 1 / 8
 
The issue is not just that this seems to say the walker cannot go from node 1 to node 3 in three steps---

we just saw that the probability of that is .  The larger issue is that a factor of  has been lost from the 1

4
4

probabilities.  This is (IMHO) mysitfying.  The reason may be that tracing out the coin from  was OK U

because we are modeling ignorance of the prior state of the coin over just one prior maybe-flip.  But 
with , the ignorance is of at least two flips in the actual history, and that may be too much.  Adding U3

the pairs of probabilities  only declared indifference to the one last flip.U3 1H
 
The behavior gets quite wild.  Do three steps thrice, and you get U  =  9

divided by .  The next step is  times4 2 U  =  10 1

32

 

 



This heavily favors staying on the same node, even if the walker starts on node 2, but taking just 2 

more quantum steps gives  timesU  =  12 1

64

and the probabilities of being on any (other) node are fairly even again.  Whatever, there does not 
seem to be any convergence to the uniform distribution as for the classical walk on a regular graph.
 
 
[At this point, one could go into the six-node graph example, then rejoin the text for the path-graph 
example (which I connected in a circle to make it regular, but maybe having end loops would be better). 
 One can work through examples with other coin matrices.  Is it safe to proclaim as a definition: A 
quantum walk on a graph  is defined by a unitary matrix  acting on a joint space  such G U H ⊗HG C

that squaring the entries of  gives a classical random walk on . ---?]Tr UHC ( ) G

 
 
Simple Python code for the examples in these notes---can play around with it more:
 
import numpy as np
import math
#from numpy import random
np.set_printoptions(precision=5, suppress=True, linewidth=120)
 
#A = np.array([0,1,0,1,1,1,1,0,1,1,1,0,0,2,0,2,0,0,1,1,1,0,1,0,1,1,0,1,0,1,2,0,0,0,2,0])
#A = A.reshape(6,6)/4.0
#A = np.array([[0.5,0.5,0.0],[0.5,0.0,0.5],[0.0,1.0,0.0]])
#A = np.array([[0.5,0.5,0.0],[0.5,0.0,0.5],[0.0,0.5,0.5]])
A = np.array([1,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,1,1,1,-1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,-1])
A = A.reshape(6,6)   #/math.sqrt(2.0)
Ai = np.matmul(A,A)
print(1)
print(A)
print()
print(2)
print(Ai)
print()
for i in range(18):
   Ai = np.matmul(Ai,A)
   print(i+3)
   print(Ai)
   print()

 

 


