
CSE610, Fall 2021 Problem Set 2 Due Thu. Oct. 21

The problems employ a simple plain-text notation for describing quantum circuits, placing gates
in left-to-right order on some fixed number n of qubits. The qubits themselves are numbered here
from 1, whereas several popular simulators number them from 0. The circuits themselves do not
care whether the qubits are ordered in “big-endian” fashion as in the text and Wybiral’s simulator
(https://wybiral.github.io/quantum/) or “little endian” as in Quirk (https://algassert.com/quirk).
In big-endian notation numbering from 1, the basis state |011〉 means that qubit 1 has value |0〉 while
qubits 2 and 3 have value |1〉. In little-endian numbering from zero, and speaking of the qubits as
“quantum registers” q0, q1, q2, . . . , we would say q0 = |1〉, q1 = |1〉, and q2 = |0〉. Output from Quirk
can be viewed either way by grabbing the “Reverse” widget from lower left in the “Order” section,
but after trying it I’ve concluded that this can cause more confusion than it is worth—mainly because
the amplitude display at right stays little-endian.

(1) Text, exercises 6.9 and 6.10 on page 70. Include the computation of HSHS∗ from problem 3.13
as part of what you show. (24 pts. total)

(2) Design quantum circuits that given the all-zero basis state as input create the states

(a) 1
2 (|000〉+ |001〉+ |010〉 − |111〉), and

(b) 1
2 (|000〉+ |001〉 − |010〉 − |111〉).

You may check your work with a quantum circuit simulator—recall that multiplying everything by
any unit scalar, in particular −1, gives the same quantum state. For a warmup, note that the 2-
qubit circuit H 1 H 2 CZ 1 2 applied to |00〉 produces the state 1

2(|00〉 + |01〉 + |10〉 − |11〉). This
is plain-text notation for the circuit with Hadamard gates on qubits 1 and 2 followed by a CZ gate
between them. (9 + 12 = 21 pts.)

(3) Design a 4 × 4 unitary matrix U such that U |00〉 equals the state |φ〉 = 1√
3
(|00〉 + |01〉 + |10〉.

For full credit, make U Hermitian as well as unitary. (9 + 3 = 12 pts. Note the difference from the
state given as warmup in problem (1).)

(4) A progression of ideas, taking the state |φ〉 in problem (2) as the springboard.

(a) Spend some time trying to design a quantum circuit C of the basic gates seen so far in the
text and notes that computes your transformation U in problem (2), or at least such that
C |00〉 = |φ〉. (If you succeed, open-ended extra credit. Else, for a paragraph explaining what
you tried and why you think it might be impossible, 6 pts.; 12 points extra if you find a proof)

(b) Show that you stand a 75% chance of creating that state on the first two qubits if you run
the circuit H 1 H 2 Tof 1 2 3 on input |000〉 and measure qubit 3. Do so formally by noting
that the two projection operators corresponding to the third-qubit measurement (in big-endian
notation) are:

P0 = |000〉 〈000|+ |010〉 〈010|+ |100〉 〈100|+ |110〉 〈110|
P1 = |001〉 〈001|+ |011〉 〈011|+ |101〉 〈101|+ |111〉 〈111|

Use Definition 14.3 on page 146 to verify both that the probability of the outcome for P0 is
p0 = 0.75 and that the resulting state is |φ〉 ⊗ |0〉. (9 pts.)



(c) Postselection is a “super-natural” operator that allows assuming the result of a measurement.
The Quirk simulator provides it as an operator on a single qubit at upper left in the “Toolbox”—
with the suggestive labels |0〉 〈0| and |1〉 〈1|. Show the circuit in Quirk, first using P1 to post-
select the outcome |1〉, and then using P0 to post-select on |0〉. In the latter case, note that
the amplitude display at right is little-endian, so in particular, what it shows as |001〉 is |100〉
in the notation above. Show your verification from the amplitudes that post-selecting on the
|0〉 outcome really yields the state |φ〉⊗ |0〉 in the simulator. (6 pts., for 21 total. This is really
like a work-through tutorial of an example.)

(5) Diagram the graph-state circuit CG corresponding to a three-node undirected graph G with edges
(1, 1), (1, 2), (2, 3). (It looks like a lollipop with a stick and a self-loop at the top.) You can draw it
by hand or take a screenshot from any of the quantum circuit simulators we’ve discussed, mindful of
any indexing differences. Then do the following:

(a) Show that the graph G is “net-zero,” meaning that 〈000 |CG | 000〉 = 0. Do so without any
8 × 8 matrix-vector multiplications by using the “maze” visualization from lectures. You do
not need to diagram the parts of the maze for the initial and final H⊗3 transforms, only the
three middle sections for the three edges. Show where the phase flips (−1 entries) happen in
each of the eight rows and three columns. Staring with eight “mice” all having +1 phase at
left, show how many mice get flipped to −1 phase after the Z gate and the two CZ gates—and
this will tell you how far they cancel (when they would all reunite at z0 = |000〉 at upper right
if we drew the right-hand H⊗3 maze gadget).

(b) Now let us reckon it a different way. Consider the eight possible ways to color each vertex B or
W . Call a coloring “even” if it makes an even number of B-B edges (counting zero as an even
number) and “odd” otherwise. Note that in G, the coloring BWW counts as odd because the
loop (1, 1) then counts as a B-B edge. Show how the odd-even colorings correspond to the +1
and −1 phases in the rows corresponding to the eight basis states.

(c) Argue that in general for any n-node graph G, not just this one, that the amplitude of
〈0n |CG | 0n〉 equals the number of even colorings minus the number of odd colorings, divided
by 2n. Do so by identifying each coloring with a basis state and saying why each B-B edge
gives a multiplier of −1 from the corresponding CZ gate (or Z gate in case of a loop edge).

(d) Now move the loop from vertex 1 to vertex 2 in the middle. Is the resulting graph G′′ still
net-zero? Give the amplitude value 〈000 |CG′′ | 000〉 = 0. (6 + 6 + 12 + 6 = 30 pts.)

(6) Let us take any n-node undirected graph G = (V,E) and vertex u of G and add a “stick” at u
using two new vertices v, w and two new edges (u, v) and (v, w). The resulting graph G′ = (V ′, E′)
has V ′ = V ∪ {v, w} and E′ = E ∪ {(u, v), (v, w)}. An example is that the “lollipop” graph in
problem (4) was obtained by adding the “stick” of vertices 2 and 3 to the simple loop graph on one
vertex—which we saw in notes is net-zero.

Show the following identity for the amplitude:
〈
0n+2

∣∣CG′
∣∣ 0n+2

〉
= 1

2 〈0
n |CG | 0n〉. Conclude

that G′ is net-zero if and only if G is. (Hint: Consider separately the colorings χ of the original
graph G that make χ(u) = B and those that make χ(u) = W . Show in each case how many colorings
of the extra nodes v, w flip the parity of B-B edges. 24 pts., making 132 total on the set. For up to
18 pts. extra credit, assuming nodes v, w are numbered n+ 1 and n+ 2, prove the answer to whether
we get 〈x00 |CG |x00〉 = 1

2 〈x |CG′ |x〉 for all x ∈ {0, 1}n.)


