

(0) Not graded—a challenge for class discussion: The first two pages of my “Week 9” notes add a proof of the $\Theta(n^2)$ expected time for a uniform random walk to travel from node 0 to node n in the finite path graph P_n of n edges and $n+1$ nodes. They then redo the recursion for the case where the graph is infinite to the left of 0, in the direction away from node n . What can you say about the expected time then? How about the expected time to reach either of node $-n$ or node $+n$? What if the graph has a $0.5 + \epsilon$ bias toward moving right? Or if the bias at node $\pm m$ is away from the origin node 0 when $m \leq n/2$ but toward 0 when $m > n/2$? What if the graph has other edges—do they give similar effect to the latter bias?

(1) This problem continues (5) and (6) from the previous set. All parts are about a general n -qubit graph-state circuit C_G where G is an undirected graph on n nodes, possibly allowing self-loops but not multiple edges. They also refer to the “maze diagram” visual-aid used in lectures. For better visual clarity we abbreviate $\langle 0^n | C_G | 0^n \rangle$ as $\langle 0^n | G | 0^n \rangle$ and so on.

- (a) Consider inputs x to C_G other than 0^n . Let the rows be indexed by binary strings $u \in \{0, 1\}^n$ that of course may be different from x . Give the rule for the middle section of row u to begin with a -1 phase. You may find the text’s Lemma 5.1 about the Hadamard transform helpful.
- (b) Use the rule in (a) to show that $\langle 0^n | G | x \rangle$ equals $\langle 0^n | G_x | 0^n \rangle$, where G_x is the graph obtained from G by adding self-loops to the nodes i such that $x_i = 1$. (You may suppose that the original G has no self-loops in your argument. It will then extend fairly readily to say that if G already has a self-loop at node i , then “adding a self-loop to node i ” means removing it. Put another way, only the even-odd parity of edges and loops matters. Note also that the “input” goes on the right in $\langle 0^n | G | x \rangle$. Actually, because all the gates are self-adjoint, this case is perfectly left-right symmetric, a fact that might help you in the next part.)
- (c) Now show that if $u \oplus v = x \oplus y$, then $\langle y | G | x \rangle = \langle v | G | u \rangle$. You may be able to take (and justify) one of various shortcuts.
- (d) Conclude further from this that all possible cases of $\langle z | G | y \rangle$ are “covered” by cases of $\langle 0^n | G_x | 0^n \rangle$ for appropriately-defined graphs G_x .
- (e) *Added:* One can interpret the initial and final $\mathbf{H}^{\otimes n}$ transforms as transforming from the standard basis (a.k.a the \mathbf{Z} -basis) to the Hadamard basis (a.k.a. the \mathbf{X} -basis). We can instead work within the \mathbf{Z} -basis. In order to make an operator A defined in one basis produce output within the new basis as well as take input from it, one must sandwich A by the transform and its inverse. Since $\mathbf{H}^{\otimes n}$ is self-inverse, this just means replacing \mathbf{CZ} by

$$\mathbf{E} = (\mathbf{H}^{\otimes 2})(\mathbf{CZ})(\mathbf{H}^{\otimes 2}) = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$$

(This also equals sandwiching a CNOT gate between two Hadamards on its control line only. My \mathbf{E} just means “edge”; I can’t find a standard name for it.) The transform of \mathbf{Z} is just $\mathbf{HZH} = \mathbf{X}$. Say in a few sentences what happens if you redo your answers, in particular (b) and (c), in the other basis. Does it help in confirming them? (6 + 12 + 12 + 6 + 9 = 45 pts.)

- (2)** Lipton-Regan text, exercise 14.7 on page 165. (Show the spectral method expressly. 18 pts.)
- (3)** Lipton-Regan text, exercise 14.10 on page 165. (Justify your answer briefly, for 9 pts.)
- (4)** Lipton-Regan text, exercise 8.4 on page 96 (left as-is; 12 pts., for 84 on the set).